Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 203-214    DOI: 10.6046/zrzyyg.2021224
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于MODIS的京津冀地区生态质量综合评价及其时空变化监测
左璐1,2(), 孙雷刚1,2,3(), 鲁军景1,2, 徐全洪1,2, 刘剑锋1,2, 马晓倩1,2
1.河北省科学院地理科学研究所,石家庄 050021
2.河北省地理信息开发应用工程技术研究中心,石家庄 050021
3.巨鹿县应用技术研究院,邢台 055250
MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region
ZUO Lu1,2(), SUN Leigang1,2,3(), LU Junjing1,2, XU Quanhong1,2, LIU Jianfeng1,2, MA Xiaoqian1,2
1. Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050021, China
2. Hebei Engineering Research Center for Geographic Information Application, Shijiazhuang 050021, China
3. Julu Institute of Applied Technology, Xingtai 055250, China
全文: PDF(4467 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

生态质量评价是保障人类生产生活与生态环境协调稳定、实现区域社会经济可持续发展的重要前提,利用遥感技术快速、准确、客观地定量评价区域生态质量已成为一种新的趋势。选取2001年、2010年、2019年京津冀地区的MODIS遥感数据产品,提取出反映绿度、湿度、热度和改进的干度4个重要指标,利用主成分分析法得到MODIS遥感生态指数(MODIS remote sensing ecological index,RSEIM),对京津冀地区2001—2019年近20 a间的生态质量状况进行综合评价及变化监测。结果表明: ①京津冀地区生态质量区域差异明显,北部燕山及西部太行山一带生态质量好,冀西北张家口及冀东南城市中心区生态质量差; ②2001年、2010年和2019年,京津冀地区的RSEIM均值分别为0.556,0.583和0.527,生态质量整体呈下降趋势; ③2001—2019年,京津冀地区生态质量改善和退化的面积占比分别为20.18%和35.69%,空间分布上呈现出西北改善、东南退化的格局。西北部生态改善的主要原因在于降水量增加、温度升高等水热条件变化及一系列的人为保护措施; 东南部生态退化的主要原因在于城镇化的快速推进及社会经济活动的增强。基于MODIS数据可有效实现区域大范围的生态质量综合评价,为区域社会经济绿色高质量发展提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左璐
孙雷刚
鲁军景
徐全洪
刘剑锋
马晓倩
关键词 生态质量综合评价遥感监测MODIS时空变化    
Abstract

Ecological quality assessment is an important prerequisite for guaranteeing the harmony and stability of the production and life of human beings and the ecological environment and for achieving the sustainable development of regional social economy. It has become a new trend to quickly, accurately, and objectively assess the regional ecological quality using use remote sensing technology. This study used the MODIS data of the Beijing-Tianjin-Hebei region in 2001, 2010, and 2019 to extract four important indices, namely, NDVI (greenness), LSM (humidity), NDBSI (dryness), and LST (heat). Then, this study obtained the MODIS remote sensing ecological index (RSEIM) using the principal component analysis method to conduct a comprehensive assessment and change monitoring of the ecological quality in the Beijing-Tianjin-Hebei region over the past 20 years. The results are as follows. ① The ecological quality of the Beijing-Tianjin-Hebei region shows distinct regional differences. The Yanshan Mountain in the north and the Taihang Mountain in the west have high ecological quality, while the Zhangjiakou area in the northwestern part of Hebei Province and the urban center in the southeastern part of Hebei Province suffer low ecological quality. ② In 2001, 2010, and 2019, the average RSEIM of the Beijing-Tianjin-Hebei region was 0.556, 0.583, and 0.527, respectively, with the overall ecological quality showing a downward trend. ③ From 2001 to 2019, the area with improved and degraded ecological quality in the Beijing-Tianjin-Hebei region accounted for 20.18% and 35.69% respectively, and the ecological quality in this region showed a pattern of improvement in the northwest and degradation in the southeast. The main reasons for the ecological improvement in the northwestern part of the region are the changes in water and heat conditions, such as an increase in precipitation and temperature, and a series of man-made protection measures. The reasons for ecological degradation in the southeastern part of the Beijing-Tianjin-Hebei region mainly include the rapid advancement of urbanization and the enhancement of social and economic activities. The comprehensive assessment of regional ecological quality can be effectively achieved based on MODIS data, thus providing a reference for the green and high-quality development of regional social economy.

Key wordsecological quality    comprehensive evaluation    remote sensing monitoring    MODIS    spatial-temporal changes
收稿日期: 2021-07-01      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:河北省科学院科技计划项目“河北省区域生态质量动态监测评价及提升研究”(20104);河北省科学院高层次人才培养与资助项目“河北省生态环境质量遥感评价及其时空变化”(2019G16);“基于遥感植被指数时间序列的人工林演变研究”(2020G03)
通讯作者: 孙雷刚
作者简介: 左 璐(1991-),女,博士,助理研究员,研究方向为生态遥感及资源环境监测。Email: zuol.14b@igsnrr.ac.cn
引用本文:   
左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021224      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/203
指标 2001年 2010年 2019年
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
LST -0.353 0.923 0.139 -0.063 -0.333 0.933 0.122 -0.059 -0.392 0.914 0.068 -0.085
NDSIM -0.543 -0.327 0.538 -0.556 -0.530 -0.300 0.605 -0.513 -0.512 -0.304 0.735 -0.325
SWCI 0.552 0.180 -0.158 -0.799 0.560 0.163 -0.110 -0.804 0.561 0.158 0.099 -0.806
NDVI 0.525 0.093 0.816 0.222 0.543 0.111 0.779 0.294 0.519 0.218 0.667 0.487
特征值 0.217 0.020 0.004 0.002 0.195 0.019 0.005 0.002 0.176 0.029 0.005 0.003
特征值贡献率/% 89.31 8.25 1.77 0.67 88.33 8.76 2.03 0.88 82.81 13.74 2.19 1.26
Tab.1  指标主成分分析结果
指标 2001年 2010年 2019年
均值 标准差 均值 标准差 均值 标准差
LST 0.622 0.210 0.605 0.196 0.646 0.227
NDSIM 0.439 0.260 0.424 0.242 0.466 0.227
SWCI 0.549 0.260 0.573 0.251 0.525 0.241
NDVI 0.607 0.251 0.635 0.246 0.618 0.227
RSEIM 0.556 0.257 0.583 0.244 0.527 0.239
Tab.2  各指标和RSEIM统计值
指标 2001年 2010年 2019年
LST NDSIM SWCI NDVI RSEIM LST NDSIM SWCI NDVI RSEIM LST NDSIM SWCI NDVI RSEIM
LST 1.000 -0.779 1.000 -0.745 1.000 -0.722
NDSIM 0.656 1.000 -0.971 0.618 1.000 -0.966 0.533 1.000 -0.945
SWCI -0.711 -0.970 1.000 0.987 -0.678 -0.959 1.000 0.986 -0.627 -0.931 1.000 0.979
NDVI -0.721 -0.930 0.954 1.000 0.975 -0.680 -0.921 0.952 1.000 0.974 -0.580 -0.909 0.943 1.000 0.959
平均相关度 0.696 0.852 0.879 0.868 0.928 0.658 0.833 0.863 0.851 0.918 0.580 0.791 0.834 0.811 0.901
3 a均值 LST=0.645,NDSIM=0.825,SWCI=0.858,NDVI=0.843,RSEIM=0.916
Tab.3  各指标和RSEIM相关系数统计表
Fig.1  研究区RSEIM空间分布图
Fig.2  2001—2019年研究区各等级生态质量面积和占比
Fig.3  研究区RSEIM变化空间分布
变化类别 极差 2001—2010年 2010—2019年 2001—2019年
面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/%
明显变差 -4,-3 225.72 0.10 712.40 0.33 1502.91 0.69
变差 -2,-1 32 838.31 15.13 76 358.30 35.18 75 967.23 35.00
不变 0 128 285.30 59.11 119 116.43 54.88 95 766.28 44.13
变好 1,2 55 369.04 25.51 20 841.91 9.60 42 920.70 19.78
明显变好 3,4 314.73 0.15 4.06 0.00 875.98 0.40
Tab.4  2001—2019年研究区生态质量变化面积和占比
Fig.4  2001—2019年研究区各市RSEIM统计
Fig.5  2001—2019年气候因子变化趋势
Fig.6  2001—2019年研究区各市社会经济因素变化对比
指标 2001年 2010年 2019年
RSEIM LST NDVI RSEIM LST NDVI RSEIM LST NDVI
干度 NDSIM -0.971 0.656 -0.930 -0.966 0.618 -0.921 -0.945 0.533 -0.909
NDSI -0.916 0.561 -0.876 -0.908 0.523 -0.864 -0.857 0.403 -0.850
湿度 SWCI 0.987 -0.711 0.954 0.986 -0.678 0.952 0.979 -0.627 0.943
Wet 0.775 -0.549 0.685 0.736 -0.486 0.651 0.620 -0.307 0.559
Tab.5  改进前后的干度、湿度指标与RSEIM、热度、绿度指标的相关性
[1] Wu J. Urban ecology and sustainability:The state-of-the-science and future directions[J]. Landscape and Urban Planning, 2014, 125:209-221.
doi: 10.1016/j.landurbplan.2014.01.018
[2] 樊杰, 王亚飞. 40年来中国经济地理格局变化及新时代区域协调发展[J]. 经济地理, 2019, 39(1):1-7.
Fan J, Wang Y F. Pattern evolution of China’s economic geography in the past 40 years and regional coordinated development in the new era[J]. Economic Geography, 2019, 39(1):1-7.
doi: 10.2307/142491
[3] 颜梅春, 王元超. 区域生态环境质量评价研究进展与展望[J]. 生态环境学报, 2012, 21(10):1781-1788.
Yan M C, Wang Y C. Advances in the evaluation of ecological environmental quality[J]. Ecology and Environmental Sciences, 2012, 21(10):1781-1788.
[4] 梁龙武, 王振波, 方创琳, 等. 京津冀城市群城市化与生态环境时空分异及协同发展格局[J]. 生态学报, 2019, 39(4):1212-1225.
Liang L W, Wang Z B, Fang C L, et al. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Ecological Sinica, 2019, 39(4):1212-1225.
[5] 饶丽, 周利军, 徐聪, 等. 生态环境质量评价的内涵、方法和实践[J]. 亚热带水土保持, 2020, 32(3):37-41,54.
Rao L, Zhou L J, Xu C, et al. Connotation,method and practice of the quality assessment on eco-environment[J]. Subtropical Soil and Water Conservation, 2020, 32(3):37-41,54.
[6] 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价[J]. 生态学报, 2015, 35(21):7117-7129.
Ma J, Li C X, Wei H, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing Municipality,China[J]. Acta Ecological Sinica, 2015, 35(21):7117-7129.
[7] 王毅, 谢蓉蓉, 王菲凤, 等. 基于Delphi-PSR模型的祁连山国家级自然保护区生态安全评价[J]. 山地学报, 2019, 37(3):328-336.
Wang Y, Xie R R, Wang F F, et al. Evaluation on eco-security of Qilian Mountain National Nature Reserve based on Delphi-PSR model[J]. Mountain Research, 2019, 37(3):328-336.
[8] Liu G, Wang J, Li S, et al. Dynamic evaluation of ecological vulnerability in a lake watershed based on RS and GIS technology[J]. Polish Journal of Environmental Studies, 2019, 28(3):1785-1798.
doi: 10.15244/pjoes/89981
[9] He F, Gu L, Wang T, et al. The synthetic geo-ecological environmental evaluation of a coastal coal-mining city using spatiotemporal big data:A case study in Longkou,China[J]. Journal of Cleaner Production, 2017, 142:854-866.
doi: 10.1016/j.jclepro.2016.07.011
[10] 周文英, 何彬彬. 四川省若尔盖县生态环境质量评价[J]. 地球信息科学, 2014, 16(2):314-319.
Zhou W Y, He B B. Eco-environmental quality assessment of Ruoergai County in Sichuan Province based on multi-sources remote sensing data[J]. Journal of Geo-information Science, 2014, 16(2):314-319.
[11] Wang X, Cao Y, Zhong X, et al. A new method of regional eco-environmental quality assessment and its application[J]. Journal of Environmental Quality, 2012, 41(5):1393-1401.
doi: 10.2134/jeq2011.0390
[12] Liu Y, Yue W, Fan P, et al. Assessing the urban environmental quality of mountainous cities:A case study in Chongqing,China[J]. Ecological Indicators, 2017, 81:132-145.
doi: 10.1016/j.ecolind.2017.05.048
[13] 潘洋, 巩合德, 董李勤, 等. 基于层次分析法的广西金秀地区生态环境质量综合评价[J]. 西南林业大学学报(自然科学版), 2017, 37(3):74-80.
Pan Y, Gong H D, Dong L Q, et al. Comprehensive assessment of ecological environment quality in Jinxiu area based on analytic hierarchy process[J]. Journal of Southwest Foresty University(Natural Science Edition), 2017, 37(3):74-80.
[14] 赵恒谦, 贾梁, 尹政然, 等. 基于多源遥感数据的北京市通州区土地利用/覆盖与生态环境变化监测研究[J]. 地理与地理信息科学, 2019, 35(1):38-43.
Zhao H Q, Jia L, Yin Z R, et al. Dynamic monitoring of land use and ecological environment based on multiple remote sensing data:A case study of Tongzhou District,Beijing[J]. Geography and Geo-information Science, 2019, 35(1):38-43.
[15] Wang S, Liu J, Yang C. Eco-environmental vulnerability evaluation in the Yellow River Basin,China[J]. Pedosphere, 2008, 18(2):171-182.
doi: 10.1016/S1002-0160(08)60005-3
[16] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecological Sinica, 2013, 33(24):7853-7862.
[17] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[18] Yue H, Liu Y, Li Y, et al. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index[J]. IEEE Access, 2019, 7:51295-51311.
doi: 10.1109/ACCESS.2019.2911627
[19] 茹克亚·萨吾提, 阿不都艾尼·阿不里, 李虎, 等. 基于遥感生态指数模型的阜康市生态环境动态变化监测与评价[J]. 水土保持研究, 2020, 27(1):283-297.
Rukeya S, Abuduheni A, Li H, et al. Dynamic monitonring and analysis of ecological environment in Fukang City based on RSEI model[J]. Research of Soil and Water Conservation, 2020, 27(1):283-297.
[20] 方灿莹, 胡秀娟, 徐涵秋, 等. 不同城市规划的生态质量差异对比研究[J]. 地球信息科学, 2017, 19(8):1097-1107.
Fang C Y, Hu X J, Xu H Q, et al. Comparison of the ecological quality between different urban plannings[J]. Journal of Geo-Information Science, 2017, 19(8):1097-1107.
[21] 吴宜进, 赵行双, 奚悦, 等. 基于MODIS的2006—2016年西藏生态质量综合评价及其时空变化[J]. 地理学报, 2019, 74(7):1438-1449.
doi: 10.11821/dlxb201907012
Wu Y J, Zhao X S, Xi Y, et al. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006—2016[J]. Acta Geographica Sinica, 2019, 74(7):1438-1449.
[22] Xu H, Wang Y, Guan H, et al. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis[J]. Remote Sensing, 2019, 11(20):2345.
doi: 10.3390/rs11202345
[23] 李孝永, 匡文慧. 京津冀1980—2015年城市土地利用变化时空轨迹及未来情景模拟[J]. 经济地理, 2019, 39(3):187-194.
Li X Y, Kuang W H. Spatio-temporal trajectories of urban land use change during 1980—2015 and future scenario simulation in Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geography, 2019, 39(3):187-194.
[24] Carlson T N, Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1
[25] Feng L, Jia Z, Li Q, et al, Zhang Z. Spatiotemporal change of sparse vegetation coverage in Northern China[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(2):359-366.
doi: 10.1007/s12524-018-0912-x
[26] 郭焘, 于红博, 马梓策, 等. 基于MODIS的土壤含水量时空变化及干旱化程度分析[J]. 水土保持研究, 2019, 26(4):185-189.
Guo T, Yu H B, Ma Z C, et al. Analysis of spatial and temporal variations of soil moisture content and drought degree based on MODIS[J]. Research of Soil and Water conservation, 2019, 26(4):185-189.
[27] 徐涵秋. 一种基于指数的新型遥感建筑用地及其生态环境意义[J]. 遥感技术与应用, 2007, 22(3):301-308.
Xu H Q. A new index-based built-up index (IBI) and its eco-environmental significance[J]. Remote Sensing Technology and Application, 2007, 22(3):301-308.
[28] 吕颖, 刘慧平, 刘锦绣. 基于中分辨率成像光谱仪数据的建筑指数研究[J]. 测绘科学, 2015, 40(5):44-48,70.
Lyu Y, Liu H P, Liu J X. Study on build-up index based on MODIS data[J]. Science of Surveying and Mapping, 2015, 40(5):44-48,70.
[29] 李霞, 徐涵秋, 李晶, 等. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016, 18(1):117-123.
doi: 10.3724/SP.J.1047.2016.00117
Li X, Xu H Q, Li J, et al. Extraction of bare soil features from SPOT-5 imagery based on NDSI and NDISI[J]. Journal of Geo-Information Science, 2016, 18(1):117-123.
[30] 杨江燕, 吴田, 潘肖燕, 等. 基于遥感生态指数的雄安新区生态质量评估[J]. 应用生态学报, 2019, 30(1):277-284.
Yang J Y, Wu T, Pan X Y, et al. Ecological quality assessment of Xiong’an New Area based on remote sensing ecological index[J]. Chinese Journal of Applied Ecology, 2019, 30(1):277-284.
[31] 王静, 周伟奇, 许开鹏, 等. 京津冀地区的生态质量定量评价[J]. 应用生态学报, 2017, 28(8):2667-2676.
Wang J, Zhou W Q, Xu K P, et al. Quantitative assessment of ecological quality in Beijing-Tianjin-Hebei urban megaregion,China[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2667-2676.
[32] 王伟, 王秀兰, 冯仲科, 等. 基于RS与GIS的环首都经济圈生态环境质量动态评价[J]. 安徽农业大学学报, 2015, 42(2):257-262.
Wang W, Wang X L, Feng Z K, et al. Dynamic evaluation of eco-environmental quality in the capital economic circle based on RS and GIS[J]. Journal of Anhui Agricultural University, 2015, 42(2):257-262.
[33] 王巍巍, 徐秋阳, 莫罹. 京津冀城镇群建成区生态环境影响评价[J]. 环境生态学, 2020, 2(5):27-34.
Wang W W, Xu Q Y, Mo L. Eco-environment impact assessment of built-up area of Beijing-Tianjin-Hebei urban agglomeration[J]. Environment Ecology, 2020, 2(5):27-34.
[34] 徐勇, 黄雯婷, 靖娟利, 等. 京津冀地区植被NDVI动态变化及其与气候因子的关系[J]. 水土保持通报, 2020, 40(5):319-327.
Xu Y, Huang W T, Jing J L, et al. Dynamic variation of vegetation cover and its relation with climate variables in Beijing-Tianjin-Hebei region[J]. Bulletin of Soil and Water conservation, 2020, 40(5):319-327.
[35] 陈景, 韩素卿, 肖唯文. 沧州滨海区盐碱地时空变化及治理研究[J]. 中国国土资源经济, 2018,(11):38-43.
Chen J, Han S Q, Xiao W W. Study on spatio-temporal changes and rehabilitation of saline-alkali land in the coastal area of Cangzhou[J]. Natural Resource Economics of China, 2018,(11):38-43.
[36] 许月卿, 赵菲菲, 孙丕苓. 生态脆弱区土地生态安全动态评价——以河北省张家口市为例[J]. 水土保持通报, 2015, 35(5):232-238.
Xu Y Q, Zhao F F, Sun P L. Evaluation of land ecological security inecological fragile area:A case study of Zhangjiakou City,Hebei Province[J]. Bulletin of Soil and Water Conservation, 2015, 35(5):232-238.
[37] 黄麟, 吴丹, 孙朝阳. 基于规划目标的京津风沙源治理区生态保护与修复效应[J]. 生态学报, 2020, 40(6):1923-1932.
Huang L, Wu D, Sun C Y. The ecological effects of ecosystem conservation and restoration in Beijing-Tianjin sand source regions based on the planning objects[J]. Acta Ecological Sinica, 2020, 40(6):1923-1932.
[38] 周沙, 黄跃飞, 王光谦. 黑河流域中游地区生态环境变化特征及驱动力[J]. 中国环境科学, 2014, 34(3):766-773.
Zhou S, Huang Y F, Wang G Q. Changes in the ecological environment and there determining factors in the middle Heihe River Basin[J]. China Environmental Science, 2014, 34(3):766-773.
[39] 和春兰, 普军伟, 沈金祥. 2005—2018年澜沧江下游流域景观生态安全时空变化及其驱动因素[J]. 水土保持通报, 2020, 40(4):219-227.
He C L, Pu J W, Shen J X. Spatial-temporal changes and driving mechanisms of landscape ecological security in lower reaches of Lancang River during 2005—2018[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):219-227.
[40] Lobser S E, Cohen W B. MODIS tasselled cap:Land cover characteristics expressed through transformed MODIS data[J]. International Journal of Remote Sensing, 2007, 28(22):5079-5101.
doi: 10.1080/01431160701253303
[1] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[2] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[3] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[4] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[5] 戚曌, 谭炳香, 曹晓明, 于航, 沈明潭. 乌兰布和沙漠东北缘生态承载力时空动态分析[J]. 自然资源遥感, 2023, 35(1): 222-230.
[6] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[7] 王雅婷, 朱长明, 张涛, 张新, 石智宇. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析[J]. 自然资源遥感, 2022, 34(4): 225-234.
[8] 王娟, 王志红, 张建国, 初娜, 李斯, 尹展. 河南省国家级自然保护区人类活动遥感监测及其影响强度评价[J]. 自然资源遥感, 2022, 34(4): 235-242.
[9] 辛荣芳, 李宗仁, 张焜, 张兴, 黄丽, 刘宝山. 青海省湟水流域地质灾害动态变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 254-261.
[10] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[11] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[12] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[13] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[14] 马山木, 甘甫平, 吴怀春, 闫柏琨. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
[15] 查东平, 蔡海生, 张学玲, 何庆港. 基于多时相Sentinel-1水稻种植范围提取[J]. 自然资源遥感, 2022, 34(3): 184-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发