Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 64-71    DOI: 10.6046/zrzyyg.2020386
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多尺度分割的高分辨率遥感影像镶嵌线自动提取
温银堂(), 王铁柱, 王书涛(), 王贵川, 刘诗瑜, 崔凯
燕山大学电气工程学院河北省测试计量技术及仪器重点实验室,秦皇岛 066004
Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation
WEN Yintang(), WANG Tiezhu, WANG Shutao(), Wang Guichuan, LIU Shiyu, CUI Kai
Hebei Key Laboratory of Measurement Technology and Instruments, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
全文: PDF(6024 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

镶嵌线的提取是遥感影像镶嵌的重要步骤,针对现阶段高分辨率遥感影像镶嵌技术中镶嵌线提取存在的问题,提出了一种基于多尺度分割和A*算法的镶嵌线提取方法。首先使用简单线性迭代聚类(simple linear iterative cluster,SLIC)算法对影像重叠区域进行预分割,对明显地物区域进行聚类生成紧密的超像素,获取提取影像中地物纹理信息; 然后通过不断增大区域相异度阈值对相邻区域进行合并,使用尺度集模型记录区域合并过程; 同时根据光谱特征的局部方差和莫兰指数决定最佳分割尺度,解决过分割问题; 最后使用A*算法在分割路径上寻找最佳镶嵌线。实验结果证明,该方法有效解决了镶嵌线穿过建筑、农田、河流等明显区域的问题,减少拼接痕迹,使用尺度集模型记录合并过程能有效选择最优分割尺度,可以广泛应用于高分辨率遥感影像拼接镶嵌,对遥感影像自动镶嵌有实用意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温银堂
王铁柱
王书涛
王贵川
刘诗瑜
崔凯
关键词 正射影像多尺度分割镶嵌线提取A*算法    
Abstract

The extraction of mosaic lines is an important step in the mosaic of remote sensing images. To address the problems related to mosaic line extraction existing in current mosaic techniques of high-resolution remote sensing images, the authors propose a mosaic line extraction method based on multi-scale segmentation and the A* algorithm and the steps are as follows. First, pre-segment the overlapping regions of images using the simple linear iterative cluster (SLIC) algorithm, and conduct the clustering of regions with notable surface features to generate compact superpixels to obtain and extract the texture information of the surface features in the images. Then, merge the adjacent regions by continuously increasing the regional dissimilarity threshold while recording the region merging process using a scale set model. Meanwhile, determine the optimal segmentation scale according to the local variance of spectral characteristics and the Moran index to solve the problem of over-segmentation. Finally, find out the best mosaic lines on the segmentation paths using the A* algorithm. Experimental results prove that this method can effectively solve the problem that mosaic lines pass through distinct areas such as buildings, farmlands, and rivers, thus reducing splicing traces. Meanwhile, the optimal segmentation scale can be effectively selected by recording the merging process using a scale set model. Therefore, the mosaic line extraction method proposed in this study can be widely applied in the mosaic of high-resolution remote sensing images and is practically significant for the automatic mosaic of remote sensing images.

Key wordsorthoimage    multi-scale segmentation    extraction of mosaic line    A* algorithm
收稿日期: 2020-12-01      出版日期: 2021-12-23
ZTFLH:  TP751P237  
基金资助:国家自然科学基金项目“基于光谱吸收与荧光机理的环境有机污染物检测及系统研究”(61771419);河北省自然科学基金项目“基于光谱分析方法的环境污染气体检测与系统实现”(F2017203220)
通讯作者: 王书涛
作者简介: 温银堂(1978-),男,博士,研究员,主要从事智能传感和无损检测方向的研究。Email: ytwen@ysu.cn
引用本文:   
温银堂, 王铁柱, 王书涛, 王贵川, 刘诗瑜, 崔凯. 基于多尺度分割的高分辨率遥感影像镶嵌线自动提取[J]. 自然资源遥感, 2021, 33(4): 64-71.
WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020386      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/64
Fig.1  基于多尺度分割的镶嵌线自动提取技术
Fig.2  区域邻接示意图
Fig.3  尺度集层次结构图
载荷 谱段号 波段范围/mm 分辨率/m 幅宽/km 侧摆能力 重访周期/d
全色 1 0.45~0.90 1 45(两台相机组合) ±35° 5
多光谱 2 0.45~0.52 4
3 0.52~0.59
4 0.63~0.69
5 0.77~0.89
Tab.1  高分二号卫星参数
Fig.4  正射校正影像数据
Fig.5  重叠影像获取
Fig.6  不同分割尺度下LV,MI和GS的变化图
Fig.7  典型地物分割效果图
Fig.8  镶嵌线提取结果对比
方法 区域1 区域2 区域3
ENVI软件 69 60 58
Dijkstra模型 37 36 30
本文方法 4 5 2
Tab.2  各方法穿越明显地物数量
[1] 徐冠华, 柳钦火, 陈良富, 等. 遥感与中国可持续发展:机遇和挑战[J]. 遥感学报, 2016,20(5):679-688.
Xu G H, Liu Q H, Chen L F, et al. Remote sensing for China’s sustainable development:Opportunities and challenges[J]. Journal of Remote Sensing, 2016,20(5):679-688.
[2] 薛白. 多源遥感卫星影像镶嵌技术方法研究[D]. 北京:中国地质大学(北京), 2019.
Xue B. Study on the mosaic technique of multi-source remote sensing satellite images[D]. Beijing:China University of Geosciences(Beijing), 2019.
[3] 桂新, 程朋根, 聂运菊, 等. 基于形态学与Dijkstra相结合的影像镶嵌线方法[J]. 测绘与空间地理信息, 2015,38(7):18-20.
Gui X, Cheng P G, Nie Y J, et al. Image mosaicking seamline approach based on the morphological and Dijkstra algorithm[J]. Geomatics & Spatial Information Technology, 2015,38(7):18-20.
[4] 周清华, 潘俊, 李德仁. 遥感图像镶嵌接缝线自动生成方法综述[J]. 国土资源遥感, 2013,25(2):1-7.doi: 10.6046/gtzyyg.2013.02.01.
doi: 10.6046/gtzyyg.2013.02.01
Zhou Q H, Pan J, Li D R. Overview of automatic generation of mosaicking seamlines for remote sensing images[J]. Remote Sensing for Land and Resources, 2013,25(2):1-7.doi: 10.6046/gtzyyg.2013.02.01.
doi: 10.6046/gtzyyg.2013.02.01
[5] 宫思伟, 陈时雨, 蔡杨. 最小化最大边权的正射影像镶嵌线自动搜索[J]. 测绘地理信息, 2020,45(4):104-109.
Gong S W, Chen S Y, Cai Y. Seamline detection for orthoimage mosaicking based on minimizing the maximum edge weight algorithm[J]. Journal of Geomatics, 2020,45(4):104-109.
[6] 左志权, 张祖勋, 张剑清, 等. DSM辅助下城区大比例尺正射影像镶嵌线智能检测[J]. 测绘学报, 2011,40(1):84-89.
Zuo Z Q, Zhang Z X, Zhang J Q, et al. Seamlines intelligent detection in large-scale urban orthoimage mosaicking[J]. Acta Geodaetica et Cartographica Sinica, 2011,40(1):84-89.
[7] Pan J, Zhou Q, Wang M. Seamline determination based on segmentation for urban image mosaicking[J]. IEEE Geoscience & Remote Sensing Letters, 2014,11(8):1335-1339.
[8] 钟斌. 基于初始规划网的镶嵌线自动生成方法研究[J]. 测绘与空间地理信息, 2016,39(1):211-213.
Zhong B. Study on method of generating mosaic lines automatically based on the initial planning network[J]. Geomatics & Spatial Information Technology, 2016,39(1):211-213.
[9] Wan Y C, Wang D L, Xiao J H, et al. Automatic determination of seamlines for aerial image mosaicking based on vector roads alone[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,76:1-10.
doi: 10.1016/j.isprsjprs.2012.11.002
[10] 韩天庆. 结合SURF和分水岭分割的遥感影像镶嵌线提取[D]. 徐州:中国矿业大学, 2014.
Han T Q. Seamline extraction for remote sensing images by incorporating SURF and watershed segmentation[D]. Xuzhou:China University of Mining and Technology, 2014.
[11] 岳贵杰, 杜黎明, 刘凤德, 等. A*搜索算法的正射影像镶嵌线自动提取[J]. 测绘科学, 2015,40(4):151-154.
Yue G J, Du L M, Liu F D, et al. Automatic seamline detection for orthophoto mosaicking based on A* searching algorithm[J]. Science of Surveying and Mapping, 2015,40(4):151-154.
[12] Bai X D, Cao Z G, Wang Y, et al. Image segmentation using modified SLIC and Nyström based spectral clustering[J]. OPTIK, 2014,125(16):4302-4307.
doi: 10.1016/j.ijleo.2014.03.035
[13] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高分辨率遥感影像分割方法[J]. 国土资源遥感, 2019,31(3):72-79.doi: 10.6046/gtzyyg.2019.03.10.
doi: 10.6046/gtzyyg.2019.03.10
Yao B X, Huang L, Xu Y S. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land and Resources, 2019,31(3):72-79.doi: 10.6046/gtzyyg.2019.03.10.
doi: 10.6046/gtzyyg.2019.03.10
[14] Wang Y, Qi Q, Shen X J. Image segmentation of brain MRI based on LTriDP and superpixels of improved SLIC[J]. Brain Sciences, 2020,10(2):116-130.
doi: 10.3390/brainsci10020116
[15] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Trans actions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
[16] Boemer F, Ratner E, Lendasse A. Parameter-Free image segmentation with SLIC[J]. Neurocomputing, 2018,277(1):228-236.
doi: 10.1016/j.neucom.2017.05.096
[17] 刘云翔, 杜杰, 张晴. 基于路径优化的A*算法与Dijkstra算法的性能比较[J]. 现代电子技术, 2017,40(13):181-183,186.
Liu Y X, Du J, Zhang Q. Performance comparison between A* algorithm and Dijkstra algorithm based on path optimization[J]. Modern Electronics Technique, 2017,40(13):181-183,186.
[18] Hu Z W, Zhang Q, Zou Q, et al. Stepwise evolution analysis of the region-merging segmentation for scale parameterization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(7):2461-2472.
doi: 10.1109/JSTARS.4609443
[19] Zheng M T, Xiong X D, Zhu J F. A novel orthoimage mosaic method using a weighted A* algorithm:Implementation and evaluation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,138:30-46.
doi: 10.1016/j.isprsjprs.2018.02.007
[20] Vincent L, Soille P. Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583-598.
doi: 10.1109/34.87344
[21] 刘波, 张源, 程涛, 等. 基于高分二号卫星影像的城市不透水面提取[J]. 地理信息世界, 2017,24(2):103-107.
Liu B, Zhang Y, Cheng T, et al. Urban impervious surface extraction based on the GF-2 satellite imagery[J]. Geomatics World, 2017,24(2):103-107.
[1] 苏腾飞. 基于边界信息的多尺度遥感影像分割质量非监督评价方法[J]. 自然资源遥感, 2023, 35(1): 35-40.
[2] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[3] 姜德才, 李文吉, 李敬敏, 白罩峰. ALOS PALSAR散射总功率的面向对象林火区提取[J]. 国土资源遥感, 2019, 31(4): 47-52.
[4] 毛宁, 刘慧平, 刘湘平, 张洋华. 基于RMNE方法的多尺度分割最优分割尺度选取[J]. 国土资源遥感, 2019, 31(2): 10-16.
[5] 李微, 刘伟男, 贾越平, 刘洪洋, 汤勇. 基于面向对象法艾比湖卤虫信息提取[J]. 国土资源遥感, 2018, 30(4): 176-181.
[6] 王玉, 付梅臣, 王力, 王长耀. 基于多源高分卫星影像的果棉套种信息提取[J]. 国土资源遥感, 2017, 29(2): 152-159.
[7] 毕凯, 黄少林. 无人机航测技术在农村土地调查工作底图制作中的应用[J]. 国土资源遥感, 2016, 28(2): 149-153.
[8] 刘昌振, 舒红, 张志, 马国锐. 基于多尺度分割的高分遥感图像变异函数纹理提取和分类[J]. 国土资源遥感, 2015, 27(4): 47-53.
[9] 沈利娜, 蒋忠诚, 马祖陆, 杨奇勇. 基于PCI的ALOS融合正射影像图制作——以果化石漠化监测区为例[J]. 国土资源遥感, 2015, 27(3): 13-18.
[10] 李光辉, 王成, 习晓环, 郑照军, 骆社周, 岳彩荣. 机载LiDAR和高光谱数据融合提取冰川雪线[J]. 国土资源遥感, 2013, 25(3): 79-84.
[11] 周清华, 潘俊, 李德仁. 遥感图像镶嵌接缝线自动生成方法综述[J]. 国土资源遥感, 2013, 25(2): 1-7.
[12] 卢昭羿, 左小清, 黄亮, 刘静. 面向对象的投影互分割道路变化检测[J]. 国土资源遥感, 2012, 24(3): 60-64.
[13] 於雪琴, 左小清, 黄亮. 一种融合数学形态学运算的多尺度建筑物分割算法[J]. 国土资源遥感, 2012, 24(2): 41-44.
[14] 曹辉, 郭大海, 王建超, 段延松. 基于物探飞行模式的正射影像快速制作[J]. 国土资源遥感, 2011, 23(3): 67-70.
[15] 邓媛媛, 巫兆聪, 易俐娜, 胡忠文, 龚正娟. 面向对象的高分辨率影像农用地分类[J]. 国土资源遥感, 2010, 22(4): 117-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发