Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 124-133    DOI: 10.6046/zrzyyg.2022168
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
面向多背景环境的Sentinel-2云检测
伍炜超(), 叶发旺
核工业北京地质研究院遥感信息与图像分析技术国家级重点实验室,北京 100029
Cloud detection of Sentinel-2 images for multiple backgrounds
WU Weichao(), YE Fawang
National Key Laboratory of Science and Technology on Remote Sensing Information and Image Analysis, Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(7334 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在对遥感影像进行处理分析的过程中,云层覆盖往往会对遥感信息的提取造成阻碍。然而,地表背景环境复杂多变,由于不能有效提取云目标和背景环境间的特征差异,现有方法虽然在大多数背景环境下具有较好的云检测效果,但在某些环境下则存在明显的误分漏分,不能保持原有的检测效果,表现出稳定性差、泛化能力不足的特点。对此,该文提出了一种适用于多背景环境的云检测方法,首先基于Sentinel-2A数据,对云目标与背景环境的光谱特征差异进行分析以辅助检测样本选择,并在此基础上加入薄云最优变换(Haze optimized transformation,HOT)和云位移指数(cloud displacement index,CDI)等更有效的检测指标; 最后训练得到基于随机森林的云检测模型,从背景环境和云目标种类对检测精度的影响出发,在不同背景环境的影像上与Fmask算法进行对比。结果表明,相对Fmask算法,该文方法的总体精度和F1分数分别提高了2.2%和2.9%,总体精度和F1分数的标准差分别降低了29.6%和72.5%,说明该方法在保持高检测精度的同时,显著提升了不同环境下云检测的稳定性,能够有效应用于多背景环境下的云检测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伍炜超
叶发旺
关键词 Sentinel-2云检测随机森林FmaskHOTCDI多背景环境    
Abstract

Cloud cover tends to hinder information extraction from remote sensing images during image processing. However, complex and changeable surface backgrounds make it difficult to effectively extract the differences in features between cloud targets and backgrounds. Although existing methods exhibit satisfactory cloud detection effects under most backgrounds, they show significant misclassification and omission in some environments, failing to maintain encouraging performance due to poor stability and insufficient generalization ability. Given this, this study proposed a cloud detection method for multiple backgrounds. Based on Sentinel-2A data, this study analyzed the differences in spectral characteristics between cloud targets and backgrounds to assist in the selection of samples for detection. Based on this, this study introduced more effective detection indices HOT and CDI. Finally, this study obtained a random forest-based cloud detection model through training. Then, from the perspective of the influence of backgrounds and cloud target types on detection accuracy, this study compared the obtained cloud detection model with the Fmask algorithm using images with different backgrounds. The comparison results show that the method proposed in this study increased the overall accuracy and F1 score by 2.2% and 2.9%, respectively, with the standard deviations of them reducing by 29.6% and 72.5%, respectively. These findings indicated that this method can significantly improve the stability of cloud detection in different environments while maintaining high detection accuracy. Therefore, this method is effective in cloud detection in multi-backgrounds.

Key wordsSentinel-2    cloud detection    random forest    Fmask    HOT    CDI    multi-background environment
收稿日期: 2022-04-28      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国防科工局项目“基于航空高光谱和伽马能谱的铀矿勘查技术研究”([科工二司]202188号)
作者简介: 伍炜超(1998-),男,硕士研究生,主要从事基于语义分割的遥感影像分析研究。Email: 3218802799@qq.com
引用本文:   
伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022168      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/124
波段 空间分
辨率/m
中心波
长/nm
波段范
围/nm
B1 - Coastal aerosol 60 443.9 20
B2 - Blue 10 496.6 65
B3 - Green 10 560.0 35
B4 - Red 10 664.5 30
B5 - Vegetation Red Edge 20 703.9 15
B6 - Vegetation Red Edge 20 740.2 15
B7 - Vegetation Red Edge 20 782.5 20
B8 - NIR 10 835.1 115
B8a - Narrow NIR 20 864.8 20
B9 - Water vapor 60 945.0 20
B10 - SWIR-Cirrus 60 1 373.5 30
B11 - SWIR 20 1 613.7 90
B12 - SWIR 20 2 202.4 180
Tab.1  Sentinel-2A卫星波段
序号 成像时间 UTM分区 背景环境
1 2020-12-18 T33TVF 林地/农用地/城市/冰雪
2 2020-02-27 T18TYL 水面/城市/林地
3 2019-12-30 T32TQR 林地/农用地/城市/水面
4 2019-12-10 T32SNE 荒漠
5 2020-08-13 T34VCJ 林地/农用地/城市
6 2020-12-13 T31TDF 城市/水面
7 2020-08-07 T33TXF 农用地/裸地
Tab.2  样本数据
Fig.1  技术流程
Fig.2  层/积云和卷云示例
Fig.3  典型云目标与典型地物TOA反射率
Fig.4  典型云目标与典型地物B10波段TOA反射率
序号 成像时间 UTM分区 背景环境
1 2021-06-05 T40SDH 荒漠/农用地
2 2021-06-05 T40XEH 水面/冰雪
3 2021-06-06 T49SGC 林地/农用地/城市/裸地
4 2021-06-06 T54TVM 城市/水面
5 2021-06-06 T55VFJ 冰雪/林地
Tab.3  测试数据
Tab.4  云检测精度对比
Fig.5  云检测结果
Fig.6  荒漠区域误分示例
Fig.7  建成区区域误分示例
Fig.8  冰雪区域误分示例
Fig.9  高空卷云漏分示例
Fig.10  低空薄云漏分示例
[1] Rossow W B, Duenas E N. The international satellite cloud climatology project (ISCCP) web site:An online resource for research[J]. Bulletin of the American Meteorological Society, 2004, 85(2):167-172.
doi: 10.1175/BAMS-85-2-173
[2] Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28(5):823-870.
doi: 10.1080/01431160600746456
[3] Zhu X, Helmer E H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions[J]. Remote Sensing of Environment, 2018, 214:135-153.
doi: 10.1016/j.rse.2018.05.024
[4] 彭龙康, 刘励聪, 陈学泓, 等. 遥感影像云检测网络泛化性能研究:以DeepLabv3+为例[J]. 遥感学报, 2021, 25(5):1169-1186.
Peng L K, Liu L C, Chen X H, et al. Generalization ability of cloud detection network for satellite imagery based on DeepLabv3+[J]. National Remote Sensing Bulletin, 2021, 25(5):1169-1186.
doi: 10.11834/jrs.20210061
[5] Coluzzi R, Imbrenda V, Lanfredi M, et al. A first assessment of the Sentinel-2 level 1-C cloud mask product to support informed surface analyses[J]. Remote Sensing of Environment, 2018, 217:426-443.
doi: 10.1016/j.rse.2018.08.009
[6] Hagolle O, Huc M, Pascual D V, et al. A multi-temporal method for cloud detection,applied to FORMOSAT-2,VENμS,LANDSAT and SENTINEL-2 images[J]. Remote Sensing of Environment, 2010, 114(8):1747-1755.
doi: 10.1016/j.rse.2010.03.002
[7] Main-Knorn M, Pflug B, Louis J, et al. Sen2Cor for Sentinel-2[C]// Image and Signal Processing for Remote Sensing XXIII.International Society for Optics and Photonics, 2017, 10427:37-48.
[8] Qiu S, Zhu Z, He B. Fmask 4.0:Improved cloud and cloud shadow detection in Landsats4-8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 2019, 231:111205.
doi: 10.1016/j.rse.2019.05.024
[9] Fu H, Shen Y, Liu J, et al. Cloud detection for FY meteorology satellite based on ensemble thresholds and random forests approach[J]. Remote Sensing, 2019, 11(1):44.
doi: 10.3390/rs11010044
[10] 栗旭升, 刘玉峰, 陈冬花, 等. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020, 32(3):55-62.doi:10.6046/gtzyyg.2020.03.08.
doi: 10.6046/gtzyyg.2020.03.08
Li X S, Liu Y F, Chen D H, et al. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land and Resource, 2020, 32(3):55-62.doi:10.6046/gtzyyg.2020.03.08.
doi: 10.6046/gtzyyg.2020.03.08
[11] Ishida H, Oishi Y, Morita K, et al. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions[J]. Remote Sensing of Environment, 2018, 205:390-407.
doi: 10.1016/j.rse.2017.11.003
[12] Cilli R, Monaco A, Amoroso N, et al. Machine learning for cloud detection of globally distributed Sentinel-2 images[J]. Remote Sensing, 2020, 12(15):2355.
doi: 10.3390/rs12152355
[13] 王明, 刘正佳, 陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用, 2020, 35(5):1167-1177.
Wang M, Liu Z J, Chen Y Y. Comparsions of image cloud detection effect based on Sentinel-2 bands/products[J]. Remote Sensing Technology and Application, 2020, 35(5):1167-1177.
[14] 余长慧, 于海威, 张文, 等. 神经网络支持下的Sentinel-2卫星影像自动云检测[J]. 测绘通报, 2019(8):39-43.
doi: 10.13474/j.cnki.11-2246.2019.0248
Yu C H, Yu H W, Zhang W, et al. Automatic cloud detection of Sentinel-2 satellite images based on neural network[J]. Bulletin of Surveying and Mapping, 2019(8):39-43.
doi: 10.13474/j.cnki.11-2246.2019.0248
[15] Hollstein A, Segl K, Guanter L, et al. Ready-to-use methods for the detection of clouds,cirrus,snow,shadow,water and clear sky pixels in Sentinel-2 MSI images[J]. Remote Sensing, 2016, 8(8):666.
doi: 10.3390/rs8080666
[16] Zhang Y, Guindon B, Cihlar J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images[J]. Remote Sensing of Environment, 2002, 82(2-3):173-187.
doi: 10.1016/S0034-4257(02)00034-2
[17] 姜杰, 查勇, 袁杰, 等. 遥感技术在灰霾监测中的应用综述[J]. 环境监测管理与技术, 2011, 23(2):15-18.
Jiang J, Zha Y, Yuan J, et al. Application review of remote sensing technology in haze monitoring[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(2):15-18.
[18] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
[19] Frantz D, Haß E, Uhl A, et al. Improvement of the Fmask algorithm for Sentinel-2 images:Separating clouds from bright surfaces based on parallax effects[J]. Remote Sensing of Environment, 2018, 215:471-481.
doi: 10.1016/j.rse.2018.04.046
[20] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12:2825-2830.
[21] Oshiro T M, Perez P S, Baranauskas J A. How many trees in a random forest?[C]// International Workshop on Machine Learning and Data Mining in Pattern Recognition.Springer,Berlin,Heidelberg, 2012:154-168.
[22] Wei J, Huang W, Li Z, et al. Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches[J]. Remote Sensing of Environment, 2020, 248:112005.
doi: 10.1016/j.rse.2020.112005
[23] Zhu X, Helmer E H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions[J]. Remote Sensing of Environment, 2018, 214:135-153.
doi: 10.1016/j.rse.2018.05.024
[24] Joachim L, Storch T. Cloud detection for night-time panchromatic visible and near-infrared satellite imagery[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, 2:853-860.
[25] Qiu S, He B, Zhu Z, et al. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats4-8 images[J]. Remote Sensing of Environment, 2017, 199:107-119.
doi: 10.1016/j.rse.2017.07.002
[1] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[2] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[3] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[4] 侯英卓, 纪灵, 邢前国, 盛德志. 卫星遥感辅助的大型海藻养殖动态对比监测——以威海市为例[J]. 自然资源遥感, 2023, 35(2): 34-41.
[5] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[6] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[7] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[8] 鄢俊洁, 郭雪星, 瞿建华, 韩旻. 基于朴素贝叶斯方法的FY-4A/AGRI云检测模型[J]. 自然资源遥感, 2022, 34(3): 33-42.
[9] 王春霞, 张俊, 李屹旭, Phoumilay. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3): 50-58.
[10] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
[11] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[12] 王雪洁, 施国萍, 周子钦, 甄洋. 基于随机森林算法对ERA5太阳辐射产品的订正[J]. 自然资源遥感, 2022, 34(2): 105-111.
[13] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[14] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[15] 柳明星, 刘建红, 马敏飞, 蒋娅, 曾靖超. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1): 218-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发