Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 274-283    DOI: 10.6046/zrzyyg.2022221
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
GF-6与Landsat8混合像元分解的石漠化信息提取差异研究——以普定县为例
张士博1,2(), 胡文敏2,3,4(), 韩祯颖1, 李果2,3, 王忠诚1, 高志海4
1.中南林业科技大学林学院,长沙 410004
2.湖南省自然保护地风景资源大数据工程技术研究中心,长沙 410004
3.中南林业科技大学风景园林学院,长沙 410004
4.中国林业科学研究院资源信息研究所,北京 100001
Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County
ZHANG Shibo1,2(), HU Wenmin2,3,4(), HAN Zhenying1, LI Guo2,3, WANG Zhongcheng1, GAO Zhihai4
1. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
2. Engineering Technology Research Center of Big Data for Landscape Resources in Natural Protected Areas of Hunan Province, Changsha 410004, China
3. Department of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
4. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100001, China
全文: PDF(4738 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

目前不同中空间分辨率遥感卫星在利用混合像元分解方法提取石漠化信息上存在效果差异,比较不同遥感卫星在提取石漠化信息上的差异,有助于进一步提高石漠化信息提取精度。本研究以贵州省普定县为例,采用GF-6与Landsat8卫星数据,利用顶点成分分析(vertex component analysis,VCA)和完全约束最小二乘法(fully constrained least squares,FCLS)相结合的混合像元分解方法进行石漠化信息提取,探究GF-6与Landsat8在石漠化信息提取的端元特征和等级差异,以此探索GF-6在提取石漠化信息的可行性与有效性。研究结果表明: ①红边波段范围上,GF-6植被端元波谱曲线明显区别于基岩与土壤端元,更易识别出植被端元; ②石漠化信息端元提取精度上,GF-6和Landsat8提取植被端元OA分别为0.63和0.45,Kappa系数分别为0.50和0.29,RMSE分别为1.19和1.71,GF-6和Landsat8提取基岩端元OA分别为0.79和0.61,Kappa系数分别为0.63和0.42,RMSE分别为0.54和0.88; ③石漠化等级评价上,GF-6和Landsat8提取石漠化等级OA分别为0.76和0.59,Kappa系数分别为0.56和0.38,RMSE分别为0.64和1.27。因此,GF-6在混合像元分解提取石漠化信息精度要优于Landsat8,且GF-6的红边波段能更好地识别石漠化区域植被信息,基于GF-6的混合像元分解方法可作为一种石漠化监测手段应用于实际工作中。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张士博
胡文敏
韩祯颖
李果
王忠诚
高志海
关键词 石漠化GF-6顶点成分分析法完全约束最小二乘法混合像元分解    
Abstract

Different moderate-resolution remote sensing satellites exhibit various effects in extracting rocky desertification information using the pixel unmixing method. Comparing these various effects can help further improve the extraction accuracy of rocky desertification information. By extracting information on rocky desertification in Puding County, Guizhou Province from GF-6 and Landsat8 using the pixel unmixing method, this study investigated the end member characteristics and desertification grade differences between GF-6 and Landsat8. Furthermore, this study explored the feasibility and effectiveness of GF-6 in extracting rocky desertification information. The results are as follows: ① Within the red-edge band of GF-6 data, the vegetation end member exhibited significantly different spectrum curves from bedrock and soil end members, making it easier to identify the vegetation end member. ② In terms of end member extraction accuracy of rocky desertification information, GF-6 and Landsat8 yielded overall accuracy (OA) of 0.63 and 0.45 in extracting the vegetation end member, respectively, corresponding to Kappa coefficients of 0.50 and 0.29 and RMSEs of 1.19 and 1.71, respectively. Moreover, GF-6 and Landsat8 yielded OA of 0.79 and 0.61 in extracting the bedrock end member, respectively, corresponding to Kappa coefficients of 0.63 and 0.42 and RMSEs of 0.54 and 0.88, respectively. ③ In the evaluation of rocky desertification grades, GF-6 and Landsat8 yielded OA of 0.76 and 0.59 in extracting rocky desertification grades, respectively, corresponding to Kappa coefficients of 0.56 and 0.38 and RMSEs of 0.64 and 1.27. Therefore, GF-6 outperforms Landsat8 in the accuracy of extracting rocky desertification information using the pixel unmixing method. In addition, the red-edge band of GF-6 data can effectively identify the vegetation information in areas with rocky desertification. In summary, the pixel unmixing method based on GF-6 data can be practically applied to rocky desertification monitoring.

Key wordsrocky desertification    GF-6    vertex component analysis method    fully constrained least squares method    pixel unmixing
收稿日期: 2022-05-26      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家科技重大专项“高分辨率对地观测系统重大专项: 高分林业遥感应用示范系统(二期)”(21-Y30B02-9001-19/22);湖南省教育厅科学研究重点项目“亚热带丘岗区森林生态系统碳储功能评估及其技术优化”(21A0153);湖南省自然资源厅标准项目“国土空间资源环境开发利用生态风险本底调查与评价标准”(202259)
通讯作者: 胡文敏(1985-),男,博士,研究方向为环境遥感技术应用。Email: wenmin115@163.com
作者简介: 张士博(1999-),男,硕士研究生,研究方向为水土保持与荒漠化防治。Email: 747883829@qq.com
引用本文:   
张士博, 胡文敏, 韩祯颖, 李果, 王忠诚, 高志海. GF-6与Landsat8混合像元分解的石漠化信息提取差异研究——以普定县为例[J]. 自然资源遥感, 2023, 35(3): 274-283.
ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022221      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/274
Fig.1  普定县位置示意图
波段编号 GF-6 WFV Landsat8 OLI
波长范围/μm 空间分
辨率/ m
波长范围/μm 空间分
辨率/ m
Band1 0.45~0.52 16 0.433~0.453 30
Band2 0.52~0.60 0.450~0.515
Band3 0.63~0.69 0.525~0.600
Band4 0.76~0.90 0.630~0.680
Band5 0.69~0.73
(红边波段Ⅰ)

0.845~0.885



1.560~1.660
Band6 0.73~0.77
(红边波段Ⅱ)





2.100~2.300





Band7 0.40~0.45
Band8 0.59~0.63
Tab.1  GF-6与Landsat8波段对应信息
Fig.2  技术路线图
编号 石漠化程度 植被覆盖率/% 基岩裸露率/% 等级
1 无石漠化 (70,100] (0,20] 1
2 潜在石漠化 (50,70] (20,30] 2
3 轻度石漠化 (30,50] (30,50] 3
4 中度石漠化 (20,30] (50,70] 4
5 重度石漠化 (10,20] (70,90] 5
6 极重度石漠化 (0,10] (90,100] 6
Tab.2  石漠化等级评价指标与标准
石漠化等级 遥感影像 植被覆盖度/% 基岩裸露率/% 说明 实际调查照片 样点个数
无石漠化 (70,100] (0,20] 影像为饱和度很高的绿色,有明显的颗粒状地物且分布密集 4
潜在石漠化 (50,70] (20,30] 影像为饱和度较高的浅绿色,有颗粒状地物但分布稀疏 14
轻度石漠化 (30,50] (30,50] 影像为中度饱和度的浅绿色,几乎无颗状地物分布 29
中度石漠化 (20,30] (50,70] 影像为饱和度较低的浅绿色,无颗粒状地物分布,有明显的人类活动迹象 109
重度石漠化 (10,20] (70,90] 影像为棕色,无颗粒状地物分布,有人类活动的迹象但不明显 20
极重度石漠化 (0,10] (90,100] 影像颜色偏银色,无明显地物分布,无人类活动迹象 2
Tab.3  遥感解译标志
Fig.3  植被、基岩与土壤波谱曲线
Fig.4  GF-6和与Landsat8植被端元分布
Fig.5  GF-6和Landsat8基岩端元分布
Fig.6  植被端元和基岩端元精度验证
Fig.7  GF-6和Landsat8各等级石漠化分布与石漠化面积占比
石漠化等级 GF-6 Landsat8
UA PA OA Kappa
系数
RMSE UA PA OA Kappa
系数
RMSE
无石漠化 0.75 1.00 0.76 0.56 0.64 0.25 1.00 0.59 0.38 1.27
潜在石漠化 0.79 0.61 0.36 0.71
轻度石漠化 0.59 0.94 0.48 0.70
中度石漠化 0.87 0.84 0.65 0.86
重度石漠化 0.45 0.38 0.64 0.26
Tab.4  GF-6与Landsat8各等级石漠化精度评价
[1] 王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨[J]. 中国岩溶, 2002(2):31-35.
Wang S J. Concept deduction and its connotation of Karst rocky desertification[J]. Carsologica Sinica, 2002(2):31-35.
[2] 姚永慧. 中国西南喀斯特石漠化研究进展与展望[J]. 地理科学进展, 2014, 33(1):76-84.
doi: 10.11820/dlkxjz.2014.01.009
Yao Y H. Progress and prospect of Karst rocky desertification research in Southwest China[J]. Progress in Geography, 2014, 33(1):76-84.
doi: 10.11820/dlkxjz.2014.01.009
[3] Qian C, Qiang H, Wang F, et al. Optimization of rocky desertification classification model based on vegetation type and seasonal characteristic[J]. Remote Sensing, 2021, 13(15):2935.
doi: 10.3390/rs13152935
[4] Zhang J Y, Dai M H, Wang L C, et al. The challenge and future of rocky desertification control in Karst areas in southwest China[J]. Solid Earth, 2016, 7(1):83-91.
doi: 10.5194/se-7-83-2016
[5] Zhang J, Liu M, Liu X, et al. Spectral analysis of seasonal rock and vegetation changes for detecting Karst rocky desertification in southwest China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 100:102337.
doi: 10.1016/j.jag.2021.102337
[6] 种国双, 海月, 郑华, 等. 中国西南喀斯特石漠化治理现状及对策[J]. 长江科学院院报, 2021, 38(11):38-43.
doi: 10.11988/ckyyb.20210453
Zhong G S, Hai Y, Zheng H, et al. Current situation and measures of Karst rocky desertification control in Southwest China[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11):38-43.
[7] 杜文鹏, 闫慧敏, 甄霖, 等. 西南岩溶地区石漠化综合治理研究[J]. 生态学报, 2019, 39(16):5798-5808.
Du W P, Yan H M, Zhen L, et al. The experience and practice of desertification control in Karst region of southwest China[J]. Acta Ecologica Sinica, 2019, 39(16):5798-5808.
[8] Li Y, Xie J, Luo G, et al. The evolution of a Karst rocky desertification land ecosystem and its driving forces in the Houzhaihe area,China[J]. Open Journal of Ecology, 2015, 5(10):501-512.
doi: 10.4236/oje.2015.510041
[9] Tong X, Wang K, Yue Y, et al. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the Karst regions of Southwest China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 54:105-113.
doi: 10.1016/j.jag.2016.09.013
[10] Wang H, Li Q, Du X, et al. Quantitative extraction of the bedrock exposure rate based on unmanned aerial vehicle data and Landsat8 OLI image in a Karst environment[J]. Frontiers of Earth Science, 2018, 12(3):481-490.
doi: 10.1007/s11707-017-0681-9
[11] 王明明, 王世杰, 白晓永, 等. 典型小流域喀斯特石漠化演变特征及其关键表征因子与驱动因素[J]. 生态学报, 2019, 39(16):6083-6097.
Wang M M, Wang S J, Bai X Y, et al. Evolution characteristics of Karst rocky desertification in typical small watershed and the key characterization factor and driving factor[J]. Acta Ecologica Sinica, 2019, 39(16):6083-6097.
[12] 郑惠茹, 罗红霞, 向海燕, 等. 基于面向对象的石漠化山区植被信息提取及分布特征研究[J]. 长江流域资源与环境, 2018, 27(3):648-657.
Zheng H R, Luo H X, Xiang H Y, et al. Research on vegetation information extraction and distribution characteristics of rocky desertification area by means of object oriented approach[J]. Resources and Environment in the Yangtze Basin, 2018, 27(3):648-657.
[13] 周迪, 倪忠云, 杨振宇. 面向对象的喀斯特地区石漠化遥感信息提取研究——以贵州省大方地区为例[J]. 地质力学学报, 2018, 24(2):263-273.
Zhou D, Ni Z Y, Yang Z Y. Object-oriented remote sensing information extraction method for rocky desertification in Karst area: A case study of Dafang County,Guizhou[J]. Journal of Geomechanics, 2018, 24(2):263-273.
[14] 徐红枫, 王妍, 刘云根, 等. 基于Google Earth Engine的典型峰丛洼地石漠化时空演变与驱动因子分析——以西畴县为例[J]. 水土保持研究, 2022, 29(4):407-414.
Xu H F, Wang Y, Liu Y G, et al. Analysis of the spatial and temporal evolution and driving factors of rocky desertification in typical cluster depression areas in the past 30 years based on Google Earth Engine:Taking Xichou County as an example[J]. Research of Soil and Water Conservation, 2022, 29(4):407-414.
[15] 叶杰, 张斌, 许军强, 等. 遥感植被指数增强石漠化信息研究[J]. 地理空间信息, 2021, 19(9):14-18,157.
Ye J, Zhang B, Xu J Q, et al. Research on the enhancement of stony desertification information by remote sensing vegetation indexes[J]. Geospatial Information, 2021, 19(9):14-18,157.
[16] Yang H, Deng F, Fu H C, et al. Estimation of rape-cultivated area based on decision tree and mixed pixel decomposition[J]. Journal of the Indian Society of Remote Sensing, 2021, 49: 1285-1292.
doi: 10.1007/s12524-021-01309-6
[17] 陈姣, 黄远程, 李朋飞. 多季相混合像元部分分解特征的不透水面分类[J]. 测绘科学, 2021, 46(4):90-99.
Chen J, Huang Y C, Li P F. Impervious surface area classification based on partial unmixing of multi-season mixed pixels[J]. Science of Surveying and Mapping, 2021, 46(4):90-99.
[18] 刘蓉姣, 张加龙, 陈培高. 基于混合像元分解的香格里拉市高山松空间分布变化研究[J]. 西北林学院学报, 2021, 36(1):9-17.
Liu R J, Zhang J L, Chen P G. Spatial distribution changes of the pinus densata forests in Shangrila City based on mixed pixel decomposition[J]. Journal of Northwest Forestry University, 2021, 36(1):9-17.
[19] 杨明星, 张加龙, 曹影, 等. 基于Landsat8的云南松光谱端元选择与评价研究[J]. 西南林业大学学报(自然科学), 2017, 37(3):165-169.
Yang M X, Zhang J L, Cao Y, et al. Evaluation on spectral endmember of pinus yunnanensis based on Landsat8[J]. Journal of Southwest Forestry University(Natural Sciences), 2017, 37(3):165-169.
[20] 方凌江, 粘永健, 雷树涛, 等. 基于顶点成分分析的高光谱图像端元提取算法[J]. 舰船电子工程, 2014, 34(8):154-157,181.
Fang L J, Zhan Y J, Lei S T, et al. Endmembers extraction for hyperspectral images based on vertex component analysis[J]. Ship Electronic Engineering, 2014, 34(8):154-157,181.
[21] 王丽, 王威, 刘勃妮. 顶点成分分析法应用于高光谱图像端元提取[J]. 信息技术, 2022(1):37-43.
Wang L, Wang W, Liu B N. Application of vertex component analysis in end member extraction for hyperspectral image[J]. Information Technology, 2022(1):37-43.
[22] 王忠良. 基于线性混合模型的高光谱图像压缩感知研究[D]. 西安: 西北工业大学, 2015.
Wang Z L. Study on compressive sensing of hyperspectral imagery based on linear mixing models[D]. Xi’an: Northwestern Polytechnical University, 2015.
[23] 张文源, 王百田. 贵州喀斯特石漠化分类分级探讨[J]. 南京林业大学学报(自然科学版), 2015, 39(2):148-154.
Zhang W Y, Wang B T. Discussion on classification and gradation of Karst rocky desertification in Guizhou Province[J]. Journal of Nanjing Forestry University ( Natural Sciences Edition), 2015, 39(2):148-154.
[24] 胡顺光, 张增祥, 夏奎菊. 遥感石漠化信息的提取[J]. 地球信息科学学报, 2010, 12(6):870-879.
Hu S G, Zhang Z X, Xia K J. Information extraction of Karst rocky desertification using remote sensing[J]. Journal of Geo-Information Science, 2010, 12(6):870-879.
[25] 王睿卿, 蒋晓辉, 聂桐. 基于地理探测器的珠江流域NDVI时空变化及驱动力分析[J]. 人民珠江, 2022, 43(7):61-73.
Wang R Q, Jiang X H, Nie T. Spatiotemporal varitation NDVI and its driving forces in the Pearl River basin based on geodetector[J]. Pearl River, 2022, 43(7):61-73.
[26] 习慧鹏, 王世杰, 白晓永, 等. 西南典型喀斯特地区石漠化时空演变特征——以贵州省普定县为例[J]. 生态学报, 2018, 38(24):8919-8933.
Xi H P, Wang S J, Bai X Y, et al. Spatio-temporal characteristics of rocky desertification in typical Karst area of Southwest China:A case study of Puding Country,Guizhou Province[J]. Acta Ecologica Sinica, 2018, 38(24):8919-8933.
[27] 何晓宁, 曹建农, 高坡, 等. 基于顶点成分分析法的端元提取改进算法[J]. 测绘通报, 2013(7):30-34,81.
He X N, Cao J N, Gao P, et al. An improved algorithm of endmember extraction based on vertex component analysis[J]. Bulletin of Surveying and Mapping, 2013(7):30-34,81.
[28] Pu J, Zhao X, Dong P, et al. Extracting information on rocky desertification from satellite images:A comparative study[J]. Remote Sensing, 2021, 13(13):2497.
doi: 10.3390/rs13132497
[1] 李娜, 甘甫平, 董新丰, 李娟, 张世凡, 李彤彤. 基于高分五号高光谱数据的石漠化调查应用研究[J]. 自然资源遥感, 2023, 35(2): 230-235.
[2] 盛德志, 邢前国, 刘海龙, 郑向阳. 基于混合像元分解的池塘养殖动态遥感监测[J]. 自然资源遥感, 2022, 34(4): 53-59.
[3] 张红利, 罗蔚然, 李艳. 基于粒子群优化和像元分解模型的遥感影像时空融合[J]. 国土资源遥感, 2020, 32(4): 33-40.
[4] 秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 定量遥感若干前沿方向探讨[J]. 国土资源遥感, 2020, 32(4): 8-15.
[5] 王玲玉, 陈全, 吴跃, 周忠发, 但雨生. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3): 23-31.
[6] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[7] 吴林霖, 官云兰, 李嘉伟, 袁晨鑫, 李睿. 基于MODIS影像喀斯特石漠化状况研究——以贵州省为例[J]. 国土资源遥感, 2019, 31(4): 235-242.
[8] 郭丽琴, 赵志芳, 代启学, 梁明月, 付义勋, 陈百炼. 基于RS和GIS文山州石漠化时空演变特征及成因研究[J]. 国土资源遥感, 2017, 29(s1): 106-113.
[9] 林娜, 杨武年, 王斌. 基于核方法的高光谱遥感图像混合像元分解[J]. 国土资源遥感, 2017, 29(1): 14-20.
[10] 李建存, 涂杰楠, 童立强, 郭兆成. 贵州岩溶石漠化20年演变特征与影响因素分析[J]. 国土资源遥感, 2013, 25(4): 133-137.
[11] 金鑫, 柯长青. 基于混合像元分解的天山典型地区冰雪变化监测[J]. 国土资源遥感, 2012, 24(4): 146-151.
[12] 程洋, 陈建平, 皇甫江云, 童立强. 基于RS和GIS的岩溶石漠化恶化趋势定量预测——以广西都安瑶族自治县典型岩溶石漠化地区为例[J]. 国土资源遥感, 2012, 24(3): 135-139.
[13] 张志新, 邓孺孺, 李灏, 陈蕾, 陈启东, 何颖清.  ̄基于混合像元分解的南方地区植被覆盖度遥感监测——以广州市为例[J]. 国土资源遥感, 2011, 23(3): 88-94.
[14] 李丽, 童立强, 李小慧.
基于植被覆盖度的石漠化遥感信息提取方法研究
[J]. 国土资源遥感, 2010, 22(2): 59-62.
[15] 黄岩, 谢世友, 赵亚萍. 基于ETM影像的喀斯特石漠化调查研究——以重庆南川市为例[J]. 国土资源遥感, 2008, 20(1): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发