Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 169-177    DOI: 10.6046/zrzyyg.2022347
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
河南省植被NPP时空分异及其驱动因子
职露1,2(), 胡涛2, 邹滨3(), 李浩生1, 赵永强1
1.郑州师范学院地理与旅游学院,郑州 450000
2.信息工程大学数据与目标工程学院,郑州 450000
3.中南大学地球科学与信息物理学院,长沙 410083
Spatio-temporal differentiation of vegetation net primary productivity in Henan Province as well as its driving factors
ZHI Lu1,2(), HU Tao2, ZOU Bin3(), LI Haosheng1, ZHAO Yongqiang1
1. School of Geography and Tourism, Zhengzhou Normal University, Zhengzhou 450000, China
2. School of Data and Target Engineering, Information Engineering University, Zhengzhou 450000, China
3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
全文: PDF(3872 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

植被净初级生产力(net primary productivity,NPP)是判定生态系统碳源/碳汇的主要参数之一,具有区域差异性。综合MOD17A3HGF、地形和人类活动等数据,运用重心、趋势分析和地理探测器等方法,探究2010—2020年河南省植被NPP时空分异及其对驱动因子的响应,揭示各因子解释力及交互作用。结果表明,时间上,2010—2020年植被NPP呈波动微上升趋势,多年均值为424.89 gC·m-2·a-1; 重心演变时间分异明显,平均重心距离几何中心较近。空间上,植被NPP自东北向西南递增,以中值区(300~600 gC·m-2·a-1)为主。影响因素上,降水与植被NPP的相关性高于气温; 植被NPP随海拔、坡度的增加而先增加后减少,海拔小于200 m、坡度小于2°的区域对研究区NPP贡献最大; 阳坡植被NPP相较于阴坡更高; 土地利用变化下,向耕地的转化对NPP总量增长起主要作用。地理探测显示,对植被NPP变化解释力最强的单因子为降水; 双因子交互均表现为增强关系,其中降水∩经度q值最高。研究结果可为河南省生态保护和高质量发展提供数据支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
职露
胡涛
邹滨
李浩生
赵永强
关键词 河南省植被NPP时空分异驱动因子    
Abstract

The net primary productivity (NPP) of vegetation, exhibiting regional differentiation, serves as a crucial parameter for determining the carbon source/sink of ecosystems. Based on the MOD17A3HGF, topography, and human activity data, this study delved into the spatio-temporal differentiation of vegetation NPP in Henan Province from 2010 to 2020 and its response to driving factors using methods like the gravity center model, trend analysis, and the geographical detector model. Moreover, it revealed the explanatory power and interactions of the driving factors. The results are as follows: ① Temporally, the vegetation NPP from 2010 to 2020 displayed a slightly fluctuating upward trend, averaging 424.89 gC·m-2·a-1. Its gravity center exhibited significant temporal differentiation, with the average center of gravity closer to the geometric center. ② Spatially, the vegetation NPP values increased from the northeast to the southwest and were dominated by median values (300~600 gC·m-2·a-1). ③ In terms of influencing factors, the vegetation NPP showed a higher correlation with precipitation compared to temperature. Moreover, it first increased and then decreased with an increase in altitude and slope. The areas with altitudes below 200 m and slopes less than 2° contributed the most to NPP in the study area. The vegetation NPP on sunny slopes was higher than that on shady slopes. In the case of land use changes, the shift to arable land plays a significant role in the increase of total NPP. ④ The geographical detection results indicate that precipitation exhibited the highest explanatory power for changes in vegetation NPP. The two-factor interactions all showed an enhanced relationship, with the q value of precipitation ∩ longitude being the highest. These findings provide data support for ecological protection and high-quality development of Henan Province.

Key wordsHenan Province    vegetation NPP    spatio-temporal differentiation    driving factor
收稿日期: 2022-08-30      出版日期: 2023-12-21
ZTFLH:  TP79  
  P237  
  TP751  
基金资助:国家自然科学基金面上项目“东北杨树农田防护林碳储量遥感估算”(31971723);自然资源部东南沿海海洋信息智能感知与应用重点实验室课题“滨海湿地红树林生态系统多源遥感碳汇监测研究”(23103)
通讯作者: 邹滨(1981-),男,博士,教授,主要从事环境污染及自然资源遥感监测研究。Email: 210010@csu.edu.cn
作者简介: 职露(1991-),女,博士,讲师,主要从事生态环境及高光谱遥感影像处理研究。Email: zhilu_361@163.com
引用本文:   
职露, 胡涛, 邹滨, 李浩生, 赵永强. 河南省植被NPP时空分异及其驱动因子[J]. 自然资源遥感, 2023, 35(4): 169-177.
ZHI Lu, HU Tao, ZOU Bin, LI Haosheng, ZHAO Yongqiang. Spatio-temporal differentiation of vegetation net primary productivity in Henan Province as well as its driving factors. Remote Sensing for Natural Resources, 2023, 35(4): 169-177.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022347      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/169
Fig.1  研究区概况示意图
Fig.2  河南省2010—2020年植被NPP年际变化以及重心迁移轨迹
Fig.3  河南省2010—2020年植被NPP空间分布、变化趋势及其显著性检验
Fig.4  植被NPP对气温、降水的响应关系
Fig.5  植被NPP对海拔、坡度、经纬度和坡向的响应
土地利用类型 2020年
草地 耕地 建设用地 林地 水体 未利用地
2010年 草地 4 778.26 2 613.94 294.94 1 463.61 176.47 3.01
耕地 2 517.39 84 969.53 14 761.09 3 125.18 1 925.60 3.03
建设用地 102.36 11 157.82 6 364.10 104.05 217.82 0.01
林地 1 403.01 2 613.45 293.78 22 180.36 286.32 11.99
水体 129.26 1 656.64 309.49 231.52 1 723.97 0.00
未利用地 2.00 35.04 2.99 10.97 6.01 2.97
Tab.1  2010—2020年河南省土地利用类型转移矩阵
土地利用类型 2020年
草地 耕地 建设用地 林地 水体 未利用地
2010年 草地 202.52 18.77 124.45 5.71 0.36
耕地 201.81 775.08 208.28 87.71 0.20
建设用地 7.37 671.80 7.28 9.73 0
林地 115.91 183.91 16.51 14.78 1.00
水体 8.71 93.64 13.24 12.13 0
未利用地 0.14 3.10 0.30 1.02 0.22
Tab.2  2010—2020年河南省土地利用类型转化下的植被NPP总量变化
因子 海拔∩降水 海拔∩纬度 降水∩坡向 降水∩气温 降水∩土地利用 降水∩经度 经度∩纬度
q 0.728 0.685 0.781 0.682 0.740 0.804 0.699
Tab.3  驱动因子交互作用探测结果
[1] Yan M, Xue M, Zhang L, et al. A decade’s change in vegetation productivity and its response to climate change over northeast China[J]. Plants, 2021, 10(5):821.
doi: 10.3390/plants10050821
[2] Li F, Meng J, Zhu L K, et al. Spatial pattern and temporal trend of land degradation in the Heihe River basin of China using local net primary production scaling[J]. Land Degradation and Development, 2020, 31(4):518-530.
doi: 10.1002/ldr.v31.4
[3] Wang H, Liu G H, Li Z S, et al. Assessing the driving forces in vegetation dynamics using net primary productivity as the indicator:A case study in Jinghe River basin in the Loess Plateau[J]. Forests, 2018, 9(7):374.
doi: 10.3390/f9070374
[4] 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5):938-948.
doi: 10.16258/j.cnki.1674-5906.2021.05.006
Tian Y C, Yang T, Xu X. Temporal and spatial distribution characteristics and influencing factors of net primary productivity of vegetation in typical basin entering the sea Beibu gulf[J]. Ecology and Environmental Sciences, 2021, 30(5):938-948.
[5] 孙庆龄, 李宝林, 李飞, 等. 三江源植被净初级生产力估算研究进展[J]. 地理学报, 2016, 71(9):1596-1612.
doi: 10.11821/dlxb201609011
Sun Q L, Li B L, Li F, et al. Review on the estimation of net primary productivity of vegetation in the Three-River Headwater region,China[J]. Acta Geographica Sinica, 2016, 71(9):1596-1612.
[6] 徐雨晴, 肖风劲, 於琍. 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述[J]. 生态学报, 2020, 40(14):4710-4723.
Xu Y Q, Xiao F J, Yu L. Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China[J]. Acta Ecologica Sinica, 2020, 40(14):4710-4723.
[7] Han H Z, Bai J J, Ma G, et al. Seasonal responses of net primary productivity of vegetation to phenological dynamics in the Loess Plateau,China[J]. Chinese Geographical Science, 2022, 32(2):340-357.
doi: 10.1007/s11769-022-1270-8
[8] Guan X B, Shen H F, Li X H, et al. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity[J]. Science of the Total Environment, 2019, 669:342-352.
doi: 10.1016/j.scitotenv.2019.02.361
[9] 刘婵, 刘冰, 赵文智, 等. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4):924-933.
Liu C, Liu B, Zhao W Z, et al. Temporal-spatial variation analysis of net primary productivity and its relationship with climate in central Asia[J]. Remote Sensing Technology and Application, 2020, 35(4):924-933.
[10] 茆杨, 蒋勇军, 张彩云, 等. 近20年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J]. 生态学报, 2022, 42(7):2878-2890.
Mao Y, Jiang Y J, Zhang C Y, et al. Spatio-temporal changes and influencing factors of vegetation net primary productivity in southwest China in the past 20 years and its response to ecological engineering[J]. Acta Ecologica Sinica, 2022, 42(7):2878-2890.
[11] 朱思佳, 冯徽徽, 邹滨, 等. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34 (3):196-206.doi:10.6046/zrzyyg.2021283.
Zhu S J, Feng H H, Zou B, et al. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3):196-206.doi:10.6046/zrzyyg.2021283.
[12] 冯婉, 谢世友. 长江流域片2000—2015年植被NPP时空特征及影响因子探测[J]. 水土保持研究, 2022, 29(1):176-183.
Feng W, Xie S Y. Spatiotemporal characteristics and influencing factors of vegetation NPP in the Yangtze River basin from 2000 to 2015[J]. Research of Soil and Water Conservation, 2022, 29(1):176-183.
[13] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15):5306-5317.
Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15):5306-5317.
[14] 宋晓森, 杨朝兴. 基于习近平生态文明思想建设生态强省的路径探讨[J]. 中州学刊, 2022(7):90-94.
Song X S, Yang C X. Research on the path for building a strong eco-province based on Xi Jinping’s concept of ecological civilization[J]. Academic Journal of Zhongzhou, 2022(7):90-94.
[15] 李军玲, 陈怀亮, 邹春辉, 等. 1994—2008年河南省植被净第一性生产力及其时空变化[J]. 生态环境学报, 2011, 20(10):1424-1429.
doi: 10.16258/j.cnki.1674-5906(2011)10-1424-06
Li J L, Chen H L, Zou C H, et al. Vegetation net primary productivity and its temporal-spatial changes in Henan Province during 1994—2008[J]. Ecology and Environmental Sciences, 2011, 20(10):1424-1429.
[16] 王新闯, 王世东, 张合兵. 基于MOD17A3的河南省NPP时空格局[J]. 生态学杂志, 2013, 32(10):2797-2805.
Wang X C, Wang S D, Zhang H B. Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3[J]. Chinese Journal of Ecology, 2013, 32(10):2797-2805.
[17] 刘忠阳, 李梦夏, 李军玲, 等. 河南省植被净初级生产力变化特征及其对气候变化的响应[J]. 河南农业大学学报, 2021, 55(1):141-151,163.
Liu Z Y, Li M X, Li J L, et al. Spatial-temporal changes of vegetation net primary productivity and its response to climate change in Henan Province[J]. Journal of Henan Agricultural University, 2021, 55(1):141-151,163.
[18] Ge W Y, Deng L Q, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773:145648.
doi: 10.1016/j.scitotenv.2021.145648
[19] 左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4):686-694.
doi: 10.16258/j.cnki.1674-5906.2020.04.006
Zuo L Y, Gao J B. Quantitative attribution analysis of NPP in Karst peak cluster depression based on geographical detector[J]. Ecology and Environmental Sciences, 2020, 29(4):686-694.
[20] Libiseller C, Grimvall A. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates[J]. Environmetrics, 2002, 13(1):71-84.
doi: 10.1002/env.v13:1
[21] 梁龙武, 先乐, 陈明星. 改革开放以来中国区域人口与经济重心演进态势及其影响因素[J]. 经济地理, 2022, 42(2):93-103.
Liang L W, Xian Y, Chen M X. Evolution trend and influencing factors of regional population and economy gravity center in China since the reform and opening-up[J]. Economic Geography, 2022, 42(2):93-103.
[22] 肖东洋, 牛海鹏, 闫弘轩, 等. 1990—2018年黄河流域(河南段)土地利用格局时空演变[J]. 农业工程学报, 2020, 36(15):271-281,326.
Xiao D Y, Niu H P, Yan H X, et al. Spatiotemperal evolution of land use pattern in the Yellow River basin (Henan section) from 1990 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15):271-281,326.
[23] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
[24] 河南省统计局. 2013年河南统计年鉴[EB/OL].(2019-12-31) [2022-06-05]. https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2013/indexch.htm.
Henan Province Bureau of Statistics. 2013 Henan statistical yearbook[EB/OL].(2019-12-31) [2022-06-05]. https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2013/indexch.htm.
[25] 2019年河南十大天气气候事件公布[EB/OL].(2020-01-03) [2022-07-06]. https://www.henan.gov.cn/2014/01-01/335400.html.
The announcement of the top ten weather and climate events in Henan in 2019[EB/OL].(2020-01-03) [2022-07-06]. https://www.henan.gov.cn/2014/01-01/335400.html.
[26] 陈阳. 河南省植被NPP与水文气象要素的时空变化及其响应关系[D]. 郑州: 华北水利水电大学, 2021.
Chen Y. Temporal and spatial changes of vegetation NPP and hydrological and meteorological in Henan Province and their response relationship[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
[27] 王莉娜, 宋伟宏, 张金龙, 等. 祁连山国家公园植被净初级生产力时空演变及驱动因素分析[J]. 草业科学, 2020, 37(8):1458-1474.
Wang L N, Song W H, Zhang J L, et al. Spatio-temporal evolution of vegetation net primary productivity in Qilian Mountain National Park and its driving factors[J]. Pratacultural Science, 2020, 37(8):1458-1474.
[28] 郭灵辉, 高江波, 邹友峰. 21世纪以来河南省植被覆盖变化及气候驱动解析[J]. 中国农业大学学报, 2019, 24(5):161-173.
Guo L H, Gao J B, Zou Y F. Analysis on the vegetation cover change in Henan Province of China since the 21st century and its climatic driving[J]. Journal of China Agricultural University, 2019, 24(5):161-173.
[1] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[2] 郭艺, 甘甫平, 闫柏琨, 白娟, 邢乃琛, 刘琪. 1948—2021年河南省土壤含水量时空分布特征及其影响因素研究[J]. 自然资源遥感, 2023, 35(3): 241-252.
[3] 王娟, 王志红, 张建国, 初娜, 李斯, 尹展. 河南省国家级自然保护区人类活动遥感监测及其影响强度评价[J]. 自然资源遥感, 2022, 34(4): 235-242.
[4] 朱思佳, 冯徽徽, 邹滨, 叶书朝. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34(3): 196-206.
[5] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[6] 宋奇, 冯春晖, 高琪, 王明玥, 吴家林, 彭杰. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2): 202-212.
[7] 刘慧, 齐增湘, 黄傅强. 洞庭湖区城镇化与鸟类生境时空分异及关联分析[J]. 国土资源遥感, 2020, 32(3): 191-199.
[8] 刘昭华, 张春艳. 开封市城市扩张动态监测及驱动因子分析[J]. 国土资源遥感, 2018, 30(4): 193-199.
[9] 王俊霞, 朱秀芳, 刘宪锋, 潘耀忠. 基于多源遥感数据的旱情评价研究——以河南省为例[J]. 国土资源遥感, 2018, 30(1): 180-186.
[10] 王艳慧, 肖瑶. 北京市1989-2010年地表温度时空分异特征分析[J]. 国土资源遥感, 2014, 26(3): 146-152.
[11] 胡德勇, 李京, 陈云浩, 张兵, 彭光雄. 基于多时相Landsat数据的城市扩张及其驱动力分析[J]. 国土资源遥感, 2006, 18(4): 46-49.
[12] 杨瑞霞, 郭仰山, 詹志明, 王超. 遥感技术在河南省考古中的应用[J]. 国土资源遥感, 2001, 13(2): 19-24,64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发