Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 80-88    DOI: 10.6046/zrzyyg.2023001
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
联合无人机影像生成DSM和DOM的多层次建筑物变化检测
柴佳兴1(), 张云生1,2,3(), 杨振1, 陈斯飏1, 李海峰1
1.中南大学地球科学与信息物理学院,长沙 410012
2.水能资源利用关键技术湖南省重点实验室,长沙 410021
3.河南省空间信息生态环境保护应用重点实验室,郑州 450046
Multi-level building change detection based on the DSM and DOM generated from UAV images
CHAI Jiaxing1(), ZHANG Yunsheng1,2,3(), YANG Zhen1, CHEN Siyang1, LI Haifeng1
1. School of Geosciences and Info-physics, Central South University, Changsha 410012, China
2. Hunan Provincial Key Laboratory of Key Technology on Hydropower Development, Power China Zhongnan Engineering Co., Ltd., Changsha 410021, China
3. Key Laboratory of Ecological Environment Protection of Space Information Application of Henan, Zhengzhou 450046, China
全文: PDF(11314 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着我国城镇化水平的不断提高,城镇建筑物日新月异,及时、准确地掌握城镇建筑物的变化信息对城镇管理、违章建筑查处及灾害评估有着重要意义。该文提出了一种联合无人机影像生成数字表面模型(digital surface model,DSM)和正射影像(digital orthophoto map,DOM)的多层次建筑物变化检测方法,主要包括4个步骤: ①对无人机影像生成的密集点云和DOM进行预处理,生成差分归一化DSM(differential normalized DSM,dnDSM)并提取植被区域; ②利用多层高差阈值提取候选变化区域,并在此过程中剔除植被及面积较小区域; ③对低层候选变化区域进行连通域分析,对于每个连通对象,利用其较高层的变化检测结果剔除低层中的误检测; ④统计每个变化对象的正、负高差值数量关系,确定变化类型。实验结果表明,该文方法不但能够保留较低高差阈值检测到的低矮变化建筑物,而且能够保证高大变化建筑物的正确性、完整性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴佳兴
张云生
杨振
陈斯飏
李海峰
关键词 建筑变化监测无人机影像数字表面模型正射影像    
Abstract

The continuous advancement of urbanization in China leads to frequently changing urban buildings. Hence, grasping the change information of urban buildings duly and accurately holds critical significance for urban management, investigation of unauthorized construction, and disaster assessment. This study proposed a multi-level building change detection method combined with the digital surface model (DSM) and digital orthophoto map (DOM) generated from unmanned aerial vehicle (UAV) images. The proposed method consists of four steps: ① The dense point cloud and DOM generated from UAV images were pre-processed to generate differential normalized DSM (dnDSM) and extract vegetation zones; ② Candidate change zones were extracted using multi-level height difference thresholds, with vegetation and smaller zones eliminated; ③ The connected component analysis was conducted for lower-level candidate change zones. For connected objects, their higher-level change detection results were used to eliminate false detection results in the lower level; ④ The quantitative relationship between positive and negative height difference values of change objects was statistically analyzed to determine the change types. As demonstrated by experimental results, the proposed method can retain the change information of low-rise buildings detected through the lower height difference thresholds while ensuring correct and complete change information of high-rise buildings.

Key wordsbuilding change detection    unmanned aerial vehicle image    digital surface model    digital orthophoto map
收稿日期: 2023-01-03      出版日期: 2024-06-14
ZTFLH:  TP79  
  P315  
基金资助:国家自然科学基金资助项目“摄影测量点云自监督学习语义分类方法”(42171440);水能资源利用关键技术湖南省重点实验室开放研究基金项目“联合地面激光扫描与无人机倾斜摄影测量的库岸滑坡监测”(PKLHD201805);长沙科技计划项目重大科技专项“空天地一体化智能感知平台研究及农业应用示范”(kh2205030);河南省空间信息生态环境保护应用重点实验室开放课题“基于注意力机制的高分遥感影像语义分割”(22-FW-07-0106)
通讯作者: 张云生(1984-),男,博士,副教授,主要从事数字摄影测量研究。Email: zhangys@csu.edu.cn
作者简介: 柴佳兴(1996-),男,硕士,主要从事三维重建、变化检测等相关研究。Email: m15274822942@163.com
引用本文:   
柴佳兴, 张云生, 杨振, 陈斯飏, 李海峰. 联合无人机影像生成DSM和DOM的多层次建筑物变化检测[J]. 自然资源遥感, 2024, 36(2): 80-88.
CHAI Jiaxing, ZHANG Yunsheng, YANG Zhen, CHEN Siyang, LI Haifeng. Multi-level building change detection based on the DSM and DOM generated from UAV images. Remote Sensing for Natural Resources, 2024, 36(2): 80-88.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023001      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/80
Fig.1  本文方法流程
Fig.2  多层次变化区域提取
时相 分辨率 航高/m 焦距/mm 数量
T1 4 000×6 000 约200 53.27 1 596
T2 7 952×5 304 约180 56 2 650
Tab.1  实验数据采集信息
Fig.3-1  实验数据
Fig.3-2  实验数据
参数 本文取值
植被分割阈值 T f 0
高差阈值下限 T H m i n 1 m
高差阈值增量 Δ T H 0.5 m
高差阈值上限 T H m a x 12 m
层数选择参数 r 0.5
面积阈值下限 T S m i n 10 m2
面积阈值增量 Δ T S 4 m2
Tab.2  参数设置
Fig.4  中间结果样例
Fig.5  建筑物变化检测结果
方法 P r e c e s s i o n/% R e c a l l/% F 1/%
本文方法 95.23 93.57 94.40
T-dnDSM 95.37 78.35 86.03
DSM-GC 90.41 89.20 89.81
Tab.3  建筑物变化检测精度
Fig.6  建筑物变化类型确定
Fig.7  精度随参数变化分析
[1] 宁启蒙, 胡广云, 汤放华, 等. 科技创新与新型城镇化相关性的实证分析——以长株潭城市群为例[J]. 经济地理, 2022, 42(8):81-86.
doi: 10.15957/j.cnki.jjdl.2022.08.009
Ning Q M, Hu G Y, Tang F H, et al. Correlation between technology innovation and new-type urbanization: A case study of the Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Economic Geography, 2022, 42(8):81-86.
[2] 刘雪华, 孙大鹏. 政策工具视角下我国城镇化政策文本量化研究——基于2014—2020年的国家政策文本[J]. 吉林大学社会科学学报, 2022, 62(2):211-222,240.
Liu X H, Sun D P. Quantitative research on urbanization policy documents in China from the perspective of policy tools:Base on national policy documents from 2014 to 2020[J]. Jilin University Journal Social Sciences Edition, 2022, 62(2):211-222,240.
[3] 国家发展改革委印发《2022年新型城镇化和城乡融合发展重点任务》[J]. 小城镇建设, 2022, 40(4):117-119.
National development and reform commission issues “Key tasks of new urbanization and urban-rural integration development in 2022”[J]. Development of Small Cities and Towns, 2022, 40(4):117-119.
[4] 朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报, 2022, 51(6):1040-1049.
doi: 10.11947/j.AGCS.2022.20210640
Zhu Q, Zhang L G, Ding Y L, et al. From real 3D modeling to digital twin modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):1040-1049.
doi: 10.11947/j.AGCS.2022.20210640
[5] 冯文卿, 眭海刚, 涂继辉, 等. 高分辨率遥感影像的随机森林变化检测方法[J]. 测绘学报, 2017, 46(11):1880-1890.
doi: 10.11947/j.AGCS.2017.20170074
Feng W Q, Sui H G, Tu J H, et al. Change detection method for high resolution remote sensing images using random forest[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1880-1890.
doi: 10.11947/j.AGCS.2017.20170074
[6] Qin R J, Tian J J, Reinartz P. 3D change detection-approaches and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122:41-56.
[7] Qin R J, Huang X, Gruen A, et al. Object-based 3D building change detection on multi-temporal stereo images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):2125-2137.
[8] 叶沅鑫, 孙苗苗, 王蒙蒙, 等. 结合邻域信息和结构特征的遥感影像变化检测[J]. 测绘学报, 2021, 50(10):1349-1357.
doi: 10.11947/j.AGCS.2021.20200130
Ye Y X, Sun M M, Wang M M, et al. Change detection of remote sensing images by combining neighborhood information and structural features[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1349-1357.
doi: 10.11947/j.AGCS.2021.20200130
[9] Du S J, Zhang Y S, Qin R J, et al. Building change detection using old aerial images and new LiDAR data[J]. Remote Sensing, 2016, 8(12):1030.
[10] 张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7):1091-1107.
doi: 10.11947/j.AGCS.2022.20220070
Zhang Z X, Jiang H W, Pang S Y, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1091-1107.
doi: 10.11947/j.AGCS.2022.20220070
[11] Murakami H, Nakagawa K, Hasegawa H, et al. Change detection of buildings using an airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2/3):148-152.
[12] Tian J J, Chaabouni-Chouayakh H, Reinartz P, et al. Automatic 3D change detection based on optical satellite stereo imagery[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2010, 38(7B):586-591.
[13] Chaabouni-Chouayakh H, Krauss T, d’Angelo P, et al. 3D change detection inside urban areas using different digital surface models[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2010, 38(3B):86-91.
[14] Sasagawa A, Baltsavias E, Kocaman-Aksakal S, et al. Investigation on automatic change detection using pixel-changes and DSM-changes with ALOS-PRISM triplet images[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2013, 40(7/W2):213-217.
[15] Pang S Y, Hu X Y, Wang Z Z, et al. Object-based analysis of airborne LiDAR data for building change detection[J]. Remote Sensing, 2014, 6(11):10733-10749.
[16] 彭代锋, 张永军, 熊小东. 结合LiDAR点云和航空影像的建筑物三维变化检测[J]. 武汉大学学报(信息科学版), 2015, 40(4):462-468.
Peng D F, Zhang Y J, Xiong X D. 3D building change detection by combining LiDAR point clouds and aerial imagery[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4):462-468.
[17] 杨钰琪, 陈驰, 杨必胜, 等. 基于UAV影像密集匹配点云多层次分割的建筑物层高变化检测[J]. 武汉大学学报(信息科学版), 2021, 46(4):489-496.
Yang Y Q, Chen C, Yang B S, et al. 3D change detection of buildings based on multi-level segmentation of dense matching point clouds from UAV images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4):489-496..
[18] Tian J J, Cui S Y, Reinartz P. Building change detection based on satellite stereo imagery and digital surface models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):406-417.
[19] Pang S Y, Hu X Y, Cai Z L, et al. Building change detection from bi-temporal dense-matching point clouds and aerial images[J]. Sensors, 2018, 18(4):966.
[20] Wang H, Lv X L, Zhang K Y, et al. Building change detection based on 3D co-segmentation using satellite stereo imagery[J]. Remote Sensing, 2022, 14(3):628.
[21] 任超锋, 蒲禹池, 张福强. 顾及地理空间信息的无人机影像匹配像对提取方法[J]. 自然资源遥感, 2022, 34(1):85-92.doi:10.6046/zrzyyg.2021035.
Ren C F, Pu Y C, Zhang F Q. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1):85-92.doi:10.6046/zrzyyg.2021035.
[22] Zhang W M, Qi J B, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.
[23] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2):282-293.
[1] 温银堂, 王铁柱, 王书涛, 王贵川, 刘诗瑜, 崔凯. 基于多尺度分割的高分辨率遥感影像镶嵌线自动提取[J]. 自然资源遥感, 2021, 33(4): 64-71.
[2] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[3] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[4] 王伟, 王新盛, 姚婵, 金添, 邬佳昱, 苏伟. 基于无人机影像的小麦植株密度估算方法研究[J]. 国土资源遥感, 2020, 32(4): 111-119.
[5] 陈朋弟, 黄亮, 夏炎, 余晓娜, 高霞霞. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4): 61-67.
[6] 连会青, 孟璐, 韩瑞刚, 杨艺, 余标. 基于无人机遥感的地质信息提取——以柳江盆地为例[J]. 国土资源遥感, 2020, 32(3): 136-142.
[7] 薛武, 赵玲, 于英. 无人机影像稳健区域网平差[J]. 国土资源遥感, 2020, 32(2): 40-45.
[8] 娄佩卿, 陈晓雨, 王疏桐, 付波霖, 黄永怡, 唐廷元, 凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[9] 段欣, 胡德勇, 曹诗颂, 于琛, 张亚妮. 城区复杂下垫面天空视域因子参数化方法——以北京鸟巢周边地区为例[J]. 国土资源遥感, 2019, 31(3): 29-35.
[10] 李朋龙, 丁忆, 胡艳, 罗鼎, 段松江, 舒文强. 一种基于GPU并行计算的无人机影像快速镶嵌方法[J]. 国土资源遥感, 2017, 29(4): 57-63.
[11] 王旭东, 段福洲, 屈新原, 李丹, 余攀锋. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017, 29(1): 97-103.
[12] 毕凯, 黄少林. 无人机航测技术在农村土地调查工作底图制作中的应用[J]. 国土资源遥感, 2016, 28(2): 149-153.
[13] 耿娟, 何成龙, 刘宪鑫. 基于CSIFT特性的无人机影像匹配[J]. 国土资源遥感, 2016, 28(1): 93-100.
[14] 沈利娜, 蒋忠诚, 马祖陆, 杨奇勇. 基于PCI的ALOS融合正射影像图制作——以果化石漠化监测区为例[J]. 国土资源遥感, 2015, 27(3): 13-18.
[15] 李政, 李永树, 楚彬, 唐敏. 基于加权整体最小二乘法的无人机影像配准[J]. 国土资源遥感, 2014, 26(2): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发