Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 89-96    DOI: 10.6046/zrzyyg.2022500
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于改进U-Net网络的花岗伟晶岩信息提取方法
李婉悦1,2(), 娄德波1(), 王成辉1, 刘欢1, 张长青1, 范莹琳3, 杜晓川1,2
1.中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京 100037
2.中国地质大学(北京)地球科学与资源学院,北京 100083
3.中国煤炭地质总局勘查研究总院,北京 100039
A granitic pegmatite information extraction method based on improved U-Net
LI Wanyue1,2(), LOU Debo1(), WANG Chenghui1, LIU Huan1, ZHANG Changqing1, FAN Yinglin3, DU Xiaochuan1,2
1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
2. School of Earth Science and Resource, China University of Geosciences (Beijing), Beijing 100083, China
3. General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039, China
全文: PDF(8785 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用遥感手段进行花岗伟晶岩型锂矿的识别是锂矿找矿勘查中的重要方法之一。为提高深度学习语义分割方法在花岗伟晶岩这一特殊场景中的信息提取精度,文章对经典U-Net网络进行了改进。在编码部分卷积单元层中加入批量归一化模块,使用ReLU6激活函数代替ReLU激活函数,同时构建复合损失函数,以提高运算效率,减少训练过程中的精度损失。使用国产GF-2花岗伟晶岩型锂矿影像制作数据集进行实验,结果表明,改进U-Net模型对GF-2影像研究区内花岗伟晶岩信息的识别效果较好,相比原始U-Net网络、基于VGG主干网络的U-Net模型、基于MobileNetV3主干网络的U-Net模型以及传统随机森林模型,平均交并比分别提高了14.69,0.95,5.08和35.34百分点,F1-score分别提高了18.38,1.02,5.7和54.59百分点,实现了低植被覆盖区域遥感影像中含矿花岗伟晶岩信息的高精度自动化提取。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李婉悦
娄德波
王成辉
刘欢
张长青
范莹琳
杜晓川
关键词 深度学习花岗伟晶岩U-NetGF-2    
Abstract

Identifying granitic pegmatite-type lithium deposits based on remote sensing technology is a significant method for lithium ore prospecting. To enhance the information extraction accuracy of the deep learning-based semantic segmentation method for granitic pegmatites, this study improved the classic U-Net network. A batch normalization module was added to the convolutional layer of the encoder part, with the ReLU activation function replaced by the ReLU6 activation function. Simultaneously, a composite loss function was constructed to improve operational efficiency and reduce the precision loss in the training process. The domestic GF-2 images of a granitic pegmatite-type lithium deposit were employed to create a dataset for experiments. The results show that the improved U-Net model effectively identified the information on granitic pegmatites in the study area covered by GF-2 images. Compared to the original U-Net network, U-Net model based on VGG backbone network, U-Net model based on MobileNetV3 backbone network, and conventional random forest model, the improved U-Net model has its average intersection over union increased by 14.69, 0.95, 5.08, and 35.34 percentage points, respectively. Moreover, its F1-score increased by 18.38, 1.02, 5.7, and 54.59 percentage points, respectively. Hence, the improved U-Net model achieves the high-precision automatic extraction of ore-bearing granitic pegmatite information from remote sensing images in areas with low vegetation coverage.

Key wordsdeep learning    granitic pegmatite    U-Net    GF-2
收稿日期: 2022-12-26      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:“西部伟晶岩型粘土型锂等稀有金属成矿规律与潜力评价”(2021YFC2901905);与国家重点研发计划项目“碳酸盐岩容矿的锰铝矿探测预测技术与找矿模型”(2022YFC2903404)
通讯作者: 娄德波(1979-),男,教授级高级工程师,主要从事矿产资源评价研究。Email: llddbb_e@126.com
作者简介: 李婉悦(1998-),女,硕士研究生,资源与环境专业(遥感地质方向)。Email: liwanyue1208@126.com
引用本文:   
李婉悦, 娄德波, 王成辉, 刘欢, 张长青, 范莹琳, 杜晓川. 基于改进U-Net网络的花岗伟晶岩信息提取方法[J]. 自然资源遥感, 2024, 36(2): 89-96.
LI Wanyue, LOU Debo, WANG Chenghui, LIU Huan, ZHANG Changqing, FAN Yinglin, DU Xiaochuan. A granitic pegmatite information extraction method based on improved U-Net. Remote Sensing for Natural Resources, 2024, 36(2): 89-96.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022500      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/89
Fig.1  研究区位置及GF-2影像
Fig.2  数据集制作
Fig.3  U-Net网络结构
Fig.4  编码卷积单元层
Fig.5  验证集损失函数和MIoU变化曲线
模型 MIoU/% F1-
score/%
Pecision/
%
Recall/
%
运行时
间/ms
本文方法 96.18 96.08 95.91 96.25 315.1
U-Net 81.49 77.70 77.38 78.01 331.9
VGG_U-Net 95.23 95.06 93.85 96.29 1 534.8
MobileNetV3_
U-Net
91.10 90.38 86.45 94.68 131.6
RF 60.84 41.49 26.20 99.67 104.0
Tab.1  不同模型精度对比
Tab.2  不同方法分类结果
[1] 胡晓君, 李欢. 花岗伟晶岩型锂矿床研究进展及展望[J]. 中国有色金属学报, 2021, 31(11):3468-3488.
Hu X J, Li H. Research progress and prospect of granitic pegmatite-type lithium deposits[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11):3468-3488.
[2] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.
Wang D H. Study on critical mineral resources:Significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6):1189-1209.
[3] 娄德波, 王登红, 李婉悦, 等. 国内外花岗伟晶岩型锂矿找矿预测研究进展[J]. 矿床地质, 2022, 41(5):975-988.
Lou D B, Wang D H, Li W Y, et al. Progress of prospecting prediction research for granitic pegmatite-type lithium deposits at home and abroad[J]. Mineral Deposits, 2022, 41(5):975-988.
[4] 陈衍景, 薛莅治, 王孝磊, 等. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 2021, 95(10):2971-2995.
Chen Y J, Xue L Z, Wang X L, et al. Progress in geological study of pegmatite-type lithium deposits in the world[J]. Acta Geologica Sinica, 2021, 95(10):2971-2995.
[5] 唐军. 浅析典型伟晶岩型锂矿床成矿地质特征[J]. 世界有色金属, 2020(14):143-144.
Tang J. A brief analysis of metallogenic characteristics of typical pegmatite type lithium deposits[J]. World Nonferrous Metals, 2020(14):143-144.
[6] 姜琪, 代晶晶, 王登红, 等. 光学遥感在识别花岗伟晶岩型锂矿床中的应用[J]. 矿床地质, 2021, 40(4):793-804.
Jiang Q, Dai J J, Wang D H, et al. Application of optical remote sensing to identifying granite pegmatite lithium deposits[J]. Mineral Deposits, 2021, 40(4):793-804.
[7] Cardoso-Fernandes J, Teodoro A C, Lima A. Remote sensing data in lithium (Li) exploration:A new approach for the detection of Li-bearing pegmatites[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76:10-25.
[8] 金谋顺, 高永宝, 李侃, 等. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例[J]. 西北地质, 2019, 52(4):222-231.
Jin M S, Gao Y B, Li K, et al. Remote sensing prospecting method for pegmatite type rare metal deposit:Taking Dahongliutan area in western Kunlun for example[J]. Northwestern Geology, 2019, 52(4):222-231.
[9] 潘蒙, 唐屹, 肖瑞卿, 等. 甲基卡新3号超大型锂矿脉找矿方法[J]. 四川地质学报, 2016, 36(3):422-425,430.
Pan M, Tang Y, Xiao R Q, et al. The discovery of the superlarge Li ore vein X03 in the Jiajika ore district[J]. Acta Geologica Sichuan, 2016, 36(3):422-425,430.
[10] 姚佛军, 徐兴旺, 杨建民, 等. 戈壁浅覆盖区花岗岩中锂铍伟晶岩的ASTER遥感识别技术——以新疆镜儿泉地区为例[J]. 矿床地质, 2020, 39(4):686-696.
Yao F J, Xu X W, Yang J M, et al. A technology for identifying Li-Be pegmatite using ASTER remote sensing data in granite of Gobi shallow-covered area:A case study of recognition and prediction of Li-Be pegmatite in Jingerquan,Xinjiang[J]. Mineral Deposits, 2020, 39(4):686-696.
[11] 杜晓川, 娄德波, 徐林刚, 等. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J/OL]. 自然资源遥感, 2023(2023-01-18). https://kns.cnki.net/kcms/detail/10.1759.P.20230117.1030.007.html.
Du X C, Lou D B, Xu L G, et al. Extraction of granitic pegmatite based on GF-2 image and random forest algorithm[J/OL]. Remote Sensing for Natural Resources, 2023(2023-01-18). https://kns.cnki.net/kcms/detail/10.1759.P.20230117.1030.007.html.
[12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]// 3rd International Conference on Learning Representations,ICLR 2015-Conference Track Proceedings, 2015.
[13] Howard A G, Zhu M, Chen B, et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[EB/OL]. arXiv, 2017. http://arxiv.org/abs/1704.04861.pdf.
[14] Sandler M, Howard A, Zhu M, et al. Inverted residuals and linear bottlenecks:Mobile networks for classification, detection and segmentation[EB/OL]. arXiv, 2018. http://arxiv.org/abs/1704.04861.pdf.
[15] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South).IEEE, 2019:1314-1324.
[16] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
[17] 王海宇. 基于深度语义分割的遥感影像伟晶岩脉信息提取研究[D]. 北京: 中国地质大学(北京), 2021.
Wang H Y. Research on extracting pegmatite dike information of remote sensing image based on depth semantic segmentation[D]. Beijing: China University of Geosciences>(Beijing), 2021.
[18] 王秉璋, 韩杰, 谢祥镭, 等. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 2020, 44(1):69-79.
Wang B Z, Han J, Xie X L, et al. Discovery of the indosinian(beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau:Implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 2020, 44(1):69-79.
[19] 孔会磊, 张江伟, 金谋顺, 等. 青海柴北缘伟晶岩型锂铍等关键金属矿产勘查进展[C]// 首届全国矿产勘查大会论文集.合肥, 2021:819-822.
Kong H L, Zhang J W, Jin M S, et al. Progress of pegmatite lithiumberyllium and other key metal mineral exploration in northern Qaidam margin of Qinghai Province[C]// Proceedings of the First National Mineral Exploration Conference.Hefei, 2021:819-822.
[20] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5):479-510.
[21] Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning,2015,Lille,France.ACM, 2015:448-456.
[1] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[2] 王艺龙, 王然, 严子清, 张新铭, 李笑龙, 徐崇文. 基于GF-2和ASTER数据青海德龙地区构造蚀变信息提取及找矿预测[J]. 自然资源遥感, 2024, 36(1): 217-226.
[3] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[4] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[5] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[6] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[7] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[8] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[9] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[10] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[11] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[12] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[13] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[14] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[15] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发