Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 128-136    DOI: 10.6046/zrzyyg.2023079
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于后验概率空间变化向量分析的NSCT高分辨率遥感影像变化检测
宋嘉鑫1(), 李轶鲲1,2,3(), 杨树文1,2,3, 李小军1,2,3
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
NSCT-based change detection for high-resolution remote sensing images under the framework of change vector analysis in posterior probability space
SONG Jiaxin1(), LI Yikun1,2,3(), YANG Shuwen1,2,3, LI Xiaojun1,2,3
1. Faculty of Geomatics,Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(12723 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

非下采样轮廓波变换(non-subsampled contourlet transform,NSCT)和变化向量分析法(change vector analysis,CVA)在高分辨率遥感影像变化检测中,会因不同地物的变化幅度有显著差异,而在单一阈值下无法保证较高的检测精度。为此,文章在后验概率空间变化向量分析(change vector analysis in posterior probability space,CVAPS)的框架下,提出了一种基于模糊C均值聚类(fuzzy C-means, FCM)和简单贝叶斯网络(simple Bayesian network,SBN)的NSCT变化检测方法(FCM-SBN-CVAPS-NSCT)。该方法首先将FCM与SBN耦合,计算出后验概率变化强度图; 之后,通过NSCT将后验概率变化强度图分解为不同尺度和方向的子图,通过保留高频子图中的细节并消除噪声,优化了重构后的后验概率变化强度图,实现了后验概率空间下的多尺度、多方向的变化检测,最终提高了变化检测的精度。实验结果表明,所提方法在3个研究区中得到的Kappa系数比FCM-SBN-CVAPS分别高出了0.100 9,0.056 6和0.067 4,具有一定的优越性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋嘉鑫
李轶鲲
杨树文
李小军
关键词 简单贝叶斯网络模糊C均值聚类后验概率空间变化向量分析非下采样轮廓波变换    
Abstract

In the change detection for high-resolution remote sensing images, non-subsampled contourlet transform (NSCT) and change vector analysis (CVA) cannot ensure high detection accuracies under single thresholds due to significantly different changes in surface features. Hence, under the framework of change vector analysis in posterior probability space (CVAPS), this study proposed a NSCT-based change detection method combining fuzzy C-means (FCM) clustering and a simple Bayesian network (SBN): the FCM-SBN-CVAPS-NSCT method. First, the proposed method coupled FCM with an SBN to generate a change intensity map in posterior probability space. Then, the change intensity map was decomposed into submaps of different scales and directions through NSCT. The reconstructed change intensity map was optimized by preserving the details and eliminating noise in the high-frequency submaps. Finally, the multi-scale and multi-directional change detection in posterior probability space was achieved, enhancing the change detection accuracy. As indicated by the experimental results, the Kappa values obtained by the proposed method for three study areas were 0.100 9, 0.056 6, and 0.067 4 higher than those derived from the FCM-SBN-CVAPS method, demonstrating certain superiority.

Key wordssimple Bayesian network    fuzzy C-means clustering    change vector analysis in posterior probability space    non-subsampled contourlet transform
收稿日期: 2023-03-21      出版日期: 2024-09-03
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“边海重点区域安全态势异常感知与互联互通分析技术”(2022YFB3903604);国家自然科学基金项目“西北重点城市彩钢板建筑群与产业园区时空关联关系”(42161069)
通讯作者: 李轶鲲(1978-),男,博士,副教授,主要从事影像处理方面的研究。Email: liyikun2003@hotmail.com
作者简介: 宋嘉鑫(1997-),男,硕士研究生,研究方向为遥感图像处理。Email: 3012571995@qq.com
引用本文:   
宋嘉鑫, 李轶鲲, 杨树文, 李小军. 基于后验概率空间变化向量分析的NSCT高分辨率遥感影像变化检测[J]. 自然资源遥感, 2024, 36(3): 128-136.
SONG Jiaxin, LI Yikun, YANG Shuwen, LI Xiaojun. NSCT-based change detection for high-resolution remote sensing images under the framework of change vector analysis in posterior probability space. Remote Sensing for Natural Resources, 2024, 36(3): 128-136.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023079      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/128
Fig.1  FCM-SBN-CVAPS-NSCT算法流程
Fig.2  简单贝叶斯网络
Fig.3  NSCT三阶段分解结构
Fig.4  研究区1变化检测算法比较
Fig.5  研究区2变化检测算法比较
Fig.6  研究区3变化检测算法比较
Fig.7  不同数量训练像素数对算法Kappa系数的影响
Fig.8  不同聚类数和模糊参数q对Kappa系数的影响
Fig.9  NSCT去噪阈值参数对Kappa系数的影响
研究区 分解层数
1 2 3 4 5
研究区1 0.758 6 0.827 1 0.845 4 0.857 1 0.823 1
研究区2 0.708 2 0.714 2 0.762 2 0.711 8 0.737 6
研究区3 0.562 4 0.706 9 0.889 5 0.845 7 0.839 3
Tab.1  NSCT分解层数对Kappa系数的影响
算法 参数 错检率/% 漏检率/% 总体精度/% Kappa系数
FCM-SBN-CVAPS-NSCT 30聚类 q=3.5
1 000训练样本C=10
14.50 13.63 97.48 0.845 5
FCM-SBN-CVAPS 30聚类 q=3.5
1 000训练样本
32.13 10.92 95.27 0.744 6
SVM-CVAPS cp=13 gamma=3
1 000训练样本
47.67 8.98 91.81 0.621 7
CVA-NSCT-FCM 30聚类 q=3.5 22.40 27.25 95.70 0.727 5
CVA-NSCT C=10 6.48 40.43 96.01 0.706 3
Tab.2  研究区1变化检测算法性能比较
算法 参数 错检率/% 漏检率/% 总体精度/% Kappa系数
FCM-SBN-
CVAPS-NSCT
30聚类 q=3.5
1 000训练样本C=10
10.11 8.05 88.76 0.762 2
FCM-SBN-CVAPS 30聚类 q=3.5
1 000训练样本
13.98 3.73 86.31 0.705 6
SVM-CVAPS cp=15 gamma=3
1 000训练样本
11.96 23.41 79.35 0.581 3
CVA-NSCT-FCM 30聚类 q=3.5 13.02 68.10 55.50 0.206 8
CVA-NSCT C=10 5.47 68.59 56.95 0.238 9
Tab.3  研究区2变化检测算法性能比较
算法 参数 错检率/% 漏检率/% 总体精度/% Kappa系数
FCM-SBN-CVAPS-NSCT 30聚类 q=3.5
1 000训练样本C=10
5.51 14.13 98.15 0.889 6
FCM-SBN-CVAPS 30聚类 q=3.5
1 000训练样本
0.87 27.66 97.27 0.822 2
SVM-CVAPS cp=13 gamma=3
1 000训练样本
19.46 20.10 96.17 0.780 0
CVA-NSCT-FCM 30聚类 q=3.5 24.95 15.12 95.81 0.773 4
CVA-NSCT C=10 13.31 15.85 97.22 0.838 6
Tab.4  研究区3变化检测算法性能比较
[1] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003, 28(s1):7-12.
Li D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(s1):7-12.
[2] 杨存建, 欧晓昆, 党承林, 等. 森林植被动态变化信息的遥感检测[J]. 地球信息科学, 2000, 2(4):71-74,2.
Yang C J, Ou X K, Dang C L, et al. Detecting the change information of forest vegetation in Lushui County of Yunnan Province[J]. Geo-information Science, 2000, 2(4):71-74,2.
[3] Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182.
[4] 李天宏, 韩鹏. 厦门市土地利用/覆盖动态变化的遥感检测与分析[J]. 地理科学, 2001, 21(6):537-543.
Li T H, Han P. Land use/cover change detection and analysis with remote sensing in Xiamen city[J]. Scientia Geographica Sinica, 2001, 21(6):537-543.
doi: 10.13249/j.cnki.sgs.2001.06.537
[5] 严宇, 刘耀林. 基于融合和IFLICM算法的非监督遥感影像变化检测[J]. 测绘通报, 2018(3):25-31.
doi: 10.13474/j.cnki.11-2246.2018.0070
Yan Y, Liu Y L. Unsupervised remote sensing image change detection based on fusion and IFLICM algorithm[J]. Bulletin of Surveying and Mapping, 2018(3):25-31.
doi: 10.13474/j.cnki.11-2246.2018.0070
[6] 盛光伟. 基于角度优先变化向量分析的林地变化检测[D]. 南京: 南京大学, 2020.
Sheng G W. Forest change detection based on direction-first change vector analysis[D]. Nanjing: Nanjing University, 2020.
[7] Li L, Li X, Zhang Y, et al. Change detection for high-resolution remote sensing imagery using object-oriented change vector analysis method[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing,China.IEEE, 2016:2873-2876.
[8] Liu S, Bruzzone L, Bovolo F, et al. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4363-4378.
[9] Li S T, Fang L Y, Yin H T. Multitemporal image change detection using a detail-enhancing approach with nonsubsampled contourlet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):836-840.
[10] Guo Q, Zhang J. Change detection for mutil-temporal remote sensing images based on NSCT and hierarchical clustering[C]// 2019 IEEE International Conference on Signal Processing,Communications and Computing (ICSPCC).Dalian,China.IEEE, 2019:1-4.
[11] Sun Q, Gao Y. Unsupervised change detection in multitemporal SAR images via NSCT-domain feature clustering[C]// 2013 IEEE International Conference on Signal Processing,Communication and Computing (ICSPCC 2013).Kunming,China.IEEE, 2013:1-4.
[12] 热比古丽·艾散, 贾振红, 覃锡忠, 等. 基于NSCT与FCM的多时相遥感图像的变化检测[J]. 激光杂志, 2014, 35(2):42-44.
Rabigul H, Jia Z H, Qin X Z, et al. Based on NSCT combination with FCM multitemporal remote sensing image change detection[J]. Laser Journal, 2014, 35(2):42-44.
[13] Chen J, Chen X, Cui X, et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):317-321.
[14] Malila W A. Change vector analysis:An approach for detecting forest changes with landsat[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980:326-336.
[15] 蔡怤晟, 向泽君, 蔡衡, 等. 结合特征选择的CVA多尺度遥感影像变化检测[J]. 测绘通报, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
Cai F S, Xiang Z J, Cai H, et al. CVA multi-scale remote sensing image change detection combined with feature selection[J]. Bulletin of Surveying and Mapping, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
[16] 龙亦凡, 乔雯钰, 孙静. 基于SVM的大屯矿区遥感影像变化检测[J]. 测绘与空间地理信息, 2020, 43(12):107-110,115.
Long Y F, Qiao W Y, Sun J. Change detection of remote sensing images in datun mining area based on support vector machine[J]. Geomatics & Spatial Information Technology, 2020, 43(12):107-110,115.
[17] 李轶鲲, 杨洋, 杨树文, 等. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4):82-88.doi:10.6046/zrzyyg.2021032.
Li Y K, Yang Y, Yang S W, et al. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4):82-88.doi:10.6046/zrzyyg.2021032.
[18] 林明泽, 李轶鲲, 安新磊, 等. 简单贝叶斯网络的遥感图像检索[J]. 云南民族大学学报(自然科学版), 2010, 19(1):67-70.
Lin M Z, Li Y K, An X L, et al. Remote sensing image retrieval based on the simple Bayesian network[J]. Journal of Yunnan University of Nationalities (Natural Sciences Edition), 2010, 19(1):67-70.
[19] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
[20] DeGroot M H, Schervish M J. Probability and statistics[M]. Beijing: China Machine Press, 2021:495-506.
[1] 王子浩, 李轶鲲, 李小军, 杨树文. 基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测[J]. 自然资源遥感, 2023, 35(4): 96-104.
[2] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[3] 付昱凯, 杨树文, 闫恒, 薛庆, 洪卫丽, 苏航. 耦合非局部自相似性与散度的SAR与光学影像融合[J]. 自然资源遥感, 2023, 35(1): 99-106.
[4] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发