Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 137-145    DOI: 10.6046/zrzyyg.2023109
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
改进Transformer的高光谱图像地物分类方法——以黄河三角洲为例
李薇1(), 樊彦国1(), 周培希2
1.中国石油大学(华东)海洋与空间信息学院,青岛 266580
2.青岛弘毅天图信息科技有限责任公司,青岛 266555
Improved Transformer-based hyperspectral image classification method for surface features: A case study of the Yellow River Delta
LI Wei1(), FAN Yanguo1(), ZHOU Peixi2
1. College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao 266580, China
2. Qingdao Hongyi Tiantu Information Technology Co., Ltd., Qingdao 266555, China
全文: PDF(10380 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高光谱技术已成为沿海湿地监测的主要手段,但传统高光谱分类方法通常存在特征提取不充分、同物异谱和场景碎片化等问题。针对这些问题,该文将Transformer用于高光谱分类,提出一种新的分类方法。该方法基于视觉自注意力模型(Vision Transformer,ViT),利用Non-local技术学习全局空间特征,扩大感受野解决提取判别特征不足的问题; 同时,通过自适应跨层残差连接加强层间信息交换,解决信息损失的问题。选取NC16和NC13黄河三角洲湿地数据集作为实验数据,并将提出的方法与支持向量机(support vector machine,SVM)、一维卷积神经网络(one dimensional convolution neural network,1DCNN)、上下文深度卷积神经网络(contextual deep convolution neural network,CDCNN)、光谱空间残差网络(spectral-spatial residual network,SSRN)、混合光谱网络(hybrid spectral network,HybridSN)和ViT进行比较分析。结果表明,所提方法的总体精度(overall accuracy,OA)、平均精度(average accuracy,AA)和Kappa系数均有显著提高,OA分别达到96.24%和73.84%,AA分别达到83.42%和74.87%,Kappa分别达到94.80%和68.94%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李薇
樊彦国
周培希
关键词 高光谱湿地分类Transformer非局部空间特征    
Abstract

Hyperspectral technology has become the major means of coastal wetland monitoring. However, traditional hyperspectral classification methods usually face challenges such as insufficient feature extraction, the same surface features corresponding to different spectra, and fragmented scenes. To solve these problems, this study proposed a new classification method by applying Transformer to hyperspectral classification. This vision Transformer (ViT)-based method expanded the receptive field by learning global spatial features using non-local technology, thus overcoming the insufficient extraction of discriminant features. Meanwhile, this method enhanced the cross-layer information interchange through cross-layer adaptive residual connection, thus eliminating information loss. This study, taking NC16 and NC13 wetland datasets of the Yellow River Delta as experimental data, compared the classification method proposed in this study to support vector machine (SVM), one-dimensional convolution neural network (1DCNN), contextual deep convolution neural network (CDCNN), spectral-spatial residual network (SSRN), hybrid spectral network (HybridSN), and ViT. The comparison results show that the new method yielded significantly elevated overall accuracy (OA) of up to 96.24% and 73.84%, average accuracy (AA) reaching 83.42% and 74.87%, and Kappa coefficients of up to 94.80% and 68.94%, respectively for the two datasets.

Key wordshyperspectral    wetland classification    Transformer    non-local spatial feature
收稿日期: 2023-04-18      出版日期: 2024-09-03
ZTFLH:  TP79  
  P237  
基金资助:自主创新项目-战略专项项目“退化生态系统土壤典型指标在线监测技术”(24720221004A-3);科技揭榜专项项目“基于多源数据的胶州湾湿地生态演变分析”(2021-34);国家自然科学基金项目“黄海海水透明度时空演化规律及其影响机理研究”(42106172)
通讯作者: 樊彦国(1965-),男,博士,教授,主要从事3S技术在数字国土、城市及海岸带方向的教学与研究工作。Email: ygfan@upc.edu.cn
作者简介: 李 薇(2000-),女,硕士研究生,主要研究方向为深度学习与遥感应用。Email: s21160030@s.upc.edu.cn
引用本文:   
李薇, 樊彦国, 周培希. 改进Transformer的高光谱图像地物分类方法——以黄河三角洲为例[J]. 自然资源遥感, 2024, 36(3): 137-145.
LI Wei, FAN Yanguo, ZHOU Peixi. Improved Transformer-based hyperspectral image classification method for surface features: A case study of the Yellow River Delta. Remote Sensing for Natural Resources, 2024, 36(3): 137-145.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023109      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/137
Fig.1  本文改进算法模型图
Fig.2  Non-local模块和实现细节
Fig.3  CAF模块
Fig.4  研究区域位置
类别 查全率
SVM 1DCNN CDCNN SSRN HybridSN ViT 本文方法
碱蓬 93.91 99.76 99.63 99.64 96.23 98.78 99.87
水泥路 94.46 88.02 92.19 87.61 78.10 64.34 81.59
沥青柏油路 93.12 87.09 87.02 87.97 74.33 80.28 91.56
水域 89.97 99.10 91.67 98.38 96.41 97.75 99.99
石块 71.45 93.19 95.15 93.40 76.00 95.48 78.23
草地 80.52 76.74 73.33 73.71 91.53 74.47 74.44
铁杆 0 0 0 12.50 0 31.25 33.50
柽柳 0 60.46 85.98 55.81 49.87 54.56 82.29
枯萎的芦苇 50.16 57.40 66.24 53.03 79.66 70.28 66.25
芦苇 47.15 52.76 78.23 73.18 54.18 63.69 71.19
互花米草 98.72 94.11 95.36 86.54 92.00 95.74 96.37
苔藓 31.50 67.89 71.50 76.42 98.02 73.72 72.16
旱田 84.93 82.00 88.64 92.74 96.57 96.07 94.94
湿地 97.36 91.92 91.68 94.64 99.93 94.15 97.40
滩涂 65.41 82.19 93.91 68.20 93.91 88.01 94.87
标准反射板 0 100.00 57.60 43.80 31.00 93.75 100.00
OA 85.76 92.63 92.72 94.99 94.18 94.62 96.24
AA 62.42 77.04 79.25 74.85 75.48 79.52 83.42
Kappa 80.82 89.86 90.01 93.12 92.11 92.62 94.80
Tab.1  NC16数据集的不同方法的分类结果
Fig.5  NC16 数据集分类结果
类别名称 查全率
SVM 1DCNN CDCNN SSRN HybridSN ViT 本文方法
碱蓬 86.08 80.37 80.97 91.10 95.53 88.30 92.23
沥青水泥混合路面 99.96 99.77 98.64 99.37 100.00 94.05 99.73
湿地 77.10 87.17 86.65 90.04 70.77 73.38 80.37
水域 99.98 99.97 98.82 99.81 100.00 99.54 99.76
石油 90.35 93.78 91.08 99.54 95.20 94.24 99.04
芦苇 31.84 46.96 53.91 44.27 52.84 52.00 50.89
柽柳 0 38.94 60.00 50.56 17.04 46.36 57.27
27.36 65.49 77.74 87.72 72.93 57.36 85.17
旱田 53.67 81.13 87.64 66.06 98.27 92.00 74.97
标准反射板 0 100.00 37.65 97.37 0 89.79 51.02
柽柳芦苇混生 35.12 56.63 53.44 59.60 59.13 51.73 52.13
碱蓬芦苇混生 61.56 64.79 69.23 46.54 69.73 51.98 65.12
芦苇水域混合 45.82 49.52 49.88 65.77 58.54 68.72 65.61
OA 69.38 70.41 69.81 71.46 70.65 70.86 73.84
AA 54.53 74.19 72.74 76.75 68.46 73.80 74.87
Kappa 62.73 64.91 64.29 66.18 65.19 65.47 68.94
Tab.2  NC13数据集的不同方法的分类结果
Fig.6  NC13 数据集分类结果
Non-local CAF NC16 NC13
OA AA Kappa OA AA Kappa
× × 94.62 79.52 92.62 70.86 73.80 65.47
× 95.41 76.82 93.67 71.26 74.49 65.94
× 95.61 79.97 93.94 71.73 74.72 66.51
96.24 83.42 94.80 73.84 74.87 68.94
Tab.3  消融实验的结果
[1] Xia Y, Fang C, Lin H, et al. Spatiotemporal evolution of wetland eco-hydrological connectivity in the Poyang Lake area based on long time-series remote sensing images[J]. Remote Sensing, 2021, 13(23):4812.
[2] López-Tapia S, Ruiz P, Smith M, et al. Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105:102581.
[3] Sun S, Wang Y, Song Z, et al. Modelling aboveground biomass carbon stock of the Bohai rim coastal wetlands by integrating remote sensing,terrain,and climate data[J]. Remote Sensing, 2021, 13(21):4321.
[4] 王欣, 樊彦国. 基于改进DenseNet和空谱注意力机制的高光谱图像分类[J]. 激光与光电子学进展, 2022, 59(2):0210014.
Wang X, Fan Y G. Hyperspectral image classification based on modified DenseNet and spatial spectrum attention mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(2):0210014.
[5] 郑宗生, 刘海霞, 王振华, 等. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2):105-111.doi:10.6046/zrzyyg.2022100.
Zheng Z S, Liu H X, Wang Z H, et al. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2):105-111.doi:10.6046/zrzyyg.2022100.
[6] Duan P, Kang X, Li S, et al. Multichannel pulse-coupled neural network-based hyperspectral image visualization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2444-2456.
[7] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(s1):313-317.
Jia S P, Gao H J, Hang X. Research progress on image recognition technology of crop pests and diseases based on deep learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(s1):313-317.
[8] Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107.
[9] Mou L, Ghamisi P, Zhu X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655.
[10] Paoletti M E, Haut J M, Fernandez-Beltran R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2145-2160.
[11] Zhu L, Chen Y, Ghamisi P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5046-5063.
[12] 陈禹汗, 王波, 严清赟, 等. 结合Transformer与多尺度残差机制的高光谱遥感分类[J]. 激光与光电子学进展, 2023, 60(12):3788/LOP220921.
Chen Y H, Wang B, Yan Q Y, et al. Hyperspectral remote-sensing classification combining transformer and multiscale residual mechanisms[J]. Laser & Optoelectronics Progress, 2023, 60(12):3788/LOP220921.
[13] Sun L, Zhao G, Zheng Y, et al. Spectral-spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5522214.
[14] Hong D, Han Z, Yao J, et al. SpectralFormer:Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5518615.
[15] Zhong Z, Li Y, Ma L, et al. Spectral-spatial transformer network for hyperspectral image classification:A factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5514715.
[16] Liu K, Sun W, Shao Y, et al. Mapping coastal wetlands using transformer in transformer deep network on China ZY1-02D hyperspectral satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:3891-3903.
[17] Gao Y, Song X, Li W, et al. Fusion classification of HSI and MSI using a spatial-spectral vision transformer for wetland biodiversity estimation[J]. Remote Sensing, 2022, 14(4):850.
[18] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J/OL]. 2020.arXiv,2010.11929[2023-6-17]. https://arxiv.org/abs/2010.11929v1.
[19] Wang C, Bai X, Zhou L, et al. Hyperspectral image classification based on non-local neural networks[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama,Japan.IEEE, 2019: 584-587.
[20] Ma H, Liu G, Yuan Y. Enhanced non-local cascading network with attention mechanism for hyperspectral image denoising[C]// 2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Barcelona,Spain.IEEE, 2020:2448-2452.
[21] Lei R, Zhang C, Du S, et al. A non-local capsule neural network for hyperspectral remote sensing image classification[J]. Remote Sensing Letters, 2021, 12(1):40-49.
[22] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision.Cham:Springer, 2016:630-645.
[23] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:2261-2269.
[24] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer, 2015:234-241.
[25] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).June 27-30,2016.Las Vegas,NV,USA.IEEE, 2016:770-778.
[26] Hinton G E, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7):38-39.
[27] Xie Z, Hu J, Kang X, et al. Multilayer global spectral-spatial attention network for wetland hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5518913.
[28] Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790.
[29] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015:258619.
[30] Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2017, 26(10):4843-4855.
[31] Zhong Z, Li J, Luo Z, et al. Spectral-spatial residual network for hyperspectral image classification:A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858.
[32] Roy S K, Krishna G, Dubey S R, et al. HybridSN:Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2):277-281.
[33] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30.
[1] 易孜芳, 周磊磊, 骆检兰, 曹里. 高光谱反演耕地土壤质量评价元素含量方法研究[J]. 自然资源遥感, 2024, 36(3): 225-232.
[2] 宋奇, 高小红, 宋玉婷, 黎巧丽, 陈真, 李润祥, 张昊, 才桑洁. 基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例[J]. 自然资源遥感, 2024, 36(2): 160-172.
[3] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[4] 于航, 谭炳香, 沈明潭, 贺晨瑞, 黄逸飞. 基于机器学习算法的机载高光谱图像优势树种识别[J]. 自然资源遥感, 2024, 36(1): 118-127.
[5] 曹德龙, 林震, 唐廷元, 李楚钰, 王晓锐. 3D-HRNet网络在珠海一号高光谱影像的自然资源监测应用及生态环境分析[J]. 自然资源遥感, 2023, 35(4): 34-42.
[6] 张元涛, 潘蔚, 余长发. GF-5高光谱数据在铀矿勘查中的应用[J]. 自然资源遥感, 2023, 35(4): 61-70.
[7] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[8] 蒋卓然, 周鑫鑫, 曹伟, 王亚华, 吴长彬. 基于协同判读机制的养殖蟹塘遥感智能检测方法[J]. 自然资源遥感, 2023, 35(3): 25-34.
[9] 王嘉芃, 徐建国, 沈家晓, 张登荣. 德兴铜矿矿山重金属污染修复效果高光谱遥感评价[J]. 自然资源遥感, 2023, 35(3): 284-291.
[10] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[11] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[12] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[13] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[14] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[15] 孙肖, 彭军还, 赵锋, 王晓阳, 吕洁, 张登峰. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发