Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 96-104    DOI: 10.6046/zrzyyg.2022260
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测
王子浩1(), 李轶鲲1,2,3(), 李小军1,2,3, 杨树文1,2,3
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network
WANG Zihao1(), LI Yikun1,2,3(), LI Xiaojun1,2,3, YANG Shuwen1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(6290 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

目前,大部分遥感变化检测算法无法有效处理受高斯、椒盐和混合噪声污染的图像。为了解决这一问题,文章将能够在噪声污染条件下有效分解混合像元的5种基于邻域空间信息的模糊C均值聚类(FCM_S1,FCM_S2,KFCM_S1,KFCM_S2和FLICM)算法分别与简单贝叶斯网络(simple Bayesian network,SBN)相结合,在后验概率空间变化向量分析(change vector analysis in posterior probability space,CVAPS) 框架下,实现了5种能够较好地抗高斯、椒盐和混合噪声的遥感变化检测方法。对比实验证明,该文所提出的变化检测算法对高斯、椒盐和混合噪声具有较好的鲁棒性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子浩
李轶鲲
李小军
杨树文
关键词 变化检测模糊C均值聚类简单贝叶斯网络后验概率空间变化向量分析    
Abstract

Currently, most change detection algorithms for remote sensing images fail to effectively process images polluted by Gaussian, impulse, or mixed noise. To address this problem, this study presented five fuzzy C-means (FCM) clustering algorithms (FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, and FLICM) based on neighborhood space information. These algorithms, which can efficiently decompose mixed pixels in the presence of noise pollution, were combined with a simple Bayesian network (SBN). Under the framework of change vector analysis in posterior probability space (CVAPS), this study developed five change detection methods for remote sensing images, exhibiting high resistance to Gaussian, impulse, and mixed noise. Comparative experiments demonstrate that the change detection algorithms proposed in this study manifest high robustness against the above-mentioned noise.

Key wordschange detection    fuzzy C-means clustering    simple Bayesian network    change vector analysis in posterior probability space
收稿日期: 2022-06-22      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于脉冲耦合神经网络的高光谱遥感图像融合方法研究”(41861055);中国博士后基金项目(2019M653795);兰州交通大学优秀平台(201806)
通讯作者: 李轶鲲(1978-),男,博士,副教授,主要从事图像处理方面的研究。Email: liyikun2003@hotmail.com
作者简介: 王子浩(1998-),男,硕士研究生,研究方向为遥感图像变化检测。Email: 1344744067@qq.com
引用本文:   
王子浩, 李轶鲲, 李小军, 杨树文. 基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测[J]. 自然资源遥感, 2023, 35(4): 96-104.
WANG Zihao, LI Yikun, LI Xiaojun, YANG Shuwen. Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network. Remote Sensing for Natural Resources, 2023, 35(4): 96-104.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022260      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/96
Fig.1  SBN结构
Fig.2  算法流程图
Fig.3  实验图像及人工检测的变化结果
Fig.4  变化检测效果图(5%椒盐噪声)
指标 FCM-SBN-
CVAPS
SVM-
CVAPS
FCM_S2-
SBN-
CVAPS
KFCM_S2-
SBN-CVAPS
错检率 0.341 0.684 0.209 0.325
漏检率 0.202 0.070 0.076 0.095
总体精度 0.953 0.841 0.975 0.959
Kappa系数 0.647 0.406 0.844 0.751
Tab.1  变化检测模型性能比较(5%椒盐噪声)
Fig.5  变化检测效果图(零均值,方差0.01的高斯噪声)
指标 FCM-SBN-
CVAPS
SVM-
CVAPS
FCM_S1-
SBN-
CVAPS
KFCM_S1-
SBN-CVAPS
错检率 0.501 0.594 0.199 0.070
漏检率 0.525 0.291 0.131 0.241
总体精度 0.923 0.898 0.973 0.977
Kappa系数 0.497 0.466 0.798 0.830
Tab.2  变化检测模型性能比较(零均值,方差0.01高斯噪声)
Fig.6  变化检测效果图(0.5%椒盐噪声+零均值,方差0.001的高斯噪声)
指标 FCM-SBN-
CVAPS
SVM-
CVAPS
FLICM-
SBN-CVAPS
错检率 0.347 0.594 0.071
漏检率 0.006 0.291 0.187
总体精度 0.957 0.898 0.979
Kappa系数 0.751 0.549 0.851
Tab.3  变化检测模型性能比较(0.5%椒盐噪声+零均值,方差0.001的高斯噪声)
Fig.7  SVM-CVAPS、FCM-SBN-CVAPS算法和4种改进算法的噪声敏感度图
算法 椒盐噪
声0.4%
椒盐噪
声0.6%
零均值,方差为
0.001高斯噪声
零均值,方差为0.001高
斯噪声+椒盐噪声0.2%
零均值,方差为0.001高
斯噪声+椒盐噪声0.4%
零均值,方差为0.001高
斯噪声+椒盐噪声0.6%
FLICM-SBN-CVAPS 0.868 0.720 0.853 0.861 0.778 0.754
FCM-SBN-CVAPS 0.821 0.700 0.501 0.767 0.742 0.728
FCM_S1-SBN-CVAPS 0.885 0.882 0.873 0.864 0.876 0.861
FCM_S2-SBN-CVAPS 0.882 0.881 0.881 0.881 0.883 0.880
SVM-CVAPS 0.693 0.668 0.596 0.675 0.638 0.538
Tab.4  FLICM-SBN-CVAPS的噪声敏感度表(Kappa系数值)
Fig.8  模糊度敏感度图
Fig.9  训练样本数量敏感度图
[1] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003, 28(s1):7-12.
Li D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(s1):7-12.
[2] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006
[3] Li X, Zhou Y. An unsupervised framework for change detection in remote sensing images[C]// 2021 IEEE 21st International Conference on Communication Technology (ICCT).IEEE, 2021:1112-1116.
[4] Yetgin Z. Unsupervised change detection of satellite images using local gradual descent[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1919-1929.
doi: 10.1109/TGRS.2011.2168230
[5] 蔡怤晟, 向泽君, 蔡衡, 等. 结合特征选择的CVA多尺度遥感影像变化检测[J]. 测绘通报, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
Cai F S, Xiang Z J, Cai H, et al. CVA multi-scale remote sensing image change detection combined with feature selection[J]. Bulletin of Surveying and Mapping, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
[6] 王译著, 黄亮, 陈朋弟, 等. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3):89-96.doi: 10.6046/zrzyyg.2020312.
Wang Y Z, Huang L, Chen P D, et al. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing of Natural Resources, 2021, 33(3):89-96.doi: 10.6046/zrzyyg.2020312.
[7] 叶沅鑫, 孙苗苗, 王蒙蒙, 等. 结合邻域信息和结构特征的遥感影像变化检测[J]. 测绘学报, 2021, 50(10):1349-1357.
doi: 10.11947/j.AGCS.2021.20200130
Ye Y X, Sun M M, Wang M M, et al. Change detection of remote sensing images by combining neighborhood information and structural features[J]. Acta Geodaetica of Cartographica Sinica, 2021, 50(10):1349-1357.
[8] Chen J, Chen X, Cui X, et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):317-321.
doi: 10.1109/LGRS.2010.2068537
[9] 李轶鲲, 杨洋, 杨树文, 等. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4):82-88.doi: 10.6046/zrzyyg.2021032.
Li Y K, Yang Y, Yang S W, et al. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4):82-88.doi: 10.6046/zrzyyg.2021032.
[10] 雷涛, 张肖, 加小红, 等. 基于模糊聚类的图像分割研究进展[J]. 电子学报, 2019, 47(8):1776-1791.
doi: 10.3969/j.issn.0372-2112.2019.08.023
Lei T, Zhang X, Jia X H, et al. Research progress on image segmentation based on fuzzy clustering[J]. Acta Electronica Sinica, 2019, 47(8):1776-1791.
doi: 10.3969/j.issn.0372-2112.2019.08.023
[11] 张春森, 吴蓉蓉, 李国君, 等. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
Zhang C S, Wu R R, Li G J, et al. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing of Land and Resources, 2020, 32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
[12] Attioui S, Najah S. Unsupervised change detection method in SAR images based on deep belief network using an improved fuzzy C-means clustering algorithm[J]. IET Image Processing, 2021, 15(4):974-982.
doi: 10.1049/ipr2.v15.4
[13] Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199.
pmid: 11989844
[14] Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 2004, 34(4):1907-1916.
doi: 10.1109/TSMCB.2004.831165
[15] Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5):1328-1337.
doi: 10.1109/TIP.2010.2040763 pmid: 20089475
[16] Yang Y, Li Y, Song J, et al. A comparative study of remote sensing image change detection based on Bayesian networks and different spatial fuzzy C-means clustering[C]// 2022 The 9th International Conference on Geology Resources Management and Sustainable Development.ICGRMSD, 2022:712-719.
[17] Hou Z, Li W, Du Q. A patch tensor-based change detection method for hyperspectral images[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.IEEE, 2021:4328-4331.
[18] Xue D, Lei T, Jia X, et al. Unsupervised change detection using multiscale and multiresolution Gaussian-mixture-model guided by saliency enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:1796-1809.
doi: 10.1109/JSTARS.4609443
[19] Fang W, Xi C. Land-cover change detection for SAR images based on biobjective fuzzy local information clustering method with decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4506105.
[1] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[2] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[3] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[4] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[5] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[6] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[7] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[8] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[9] 王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
[10] 徐锐, 余小于, 张驰, 杨瑨, 黄宇, 潘俊. 融合Unet网络和IR-MAD的建筑物变化检测方法[J]. 国土资源遥感, 2020, 32(4): 90-96.
[11] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
[12] 张春森, 吴蓉蓉, 李国君, 崔卫红, 冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[13] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
[14] 刘义志, 赖华荣, 张丁旺, 刘飞鹏, 蒋小蕾, 曹庆安. 多特征混合核SVM模型的遥感影像变化检测[J]. 国土资源遥感, 2019, 31(1): 16-21.
[15] 赵展, 夏旺, 闫利. 基于多源数据的土地利用变化检测[J]. 国土资源遥感, 2018, 30(4): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发