Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 135-141    DOI: 10.6046/zrzyyg.2023118
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
联合激光点云与立体卫星影像的露滩地区精准测绘
王宗伟1,2(), 陆敏燕1,2, 范仪琳1,2
1.江苏省测绘工程院, 南京 210013
2.自然资源部国土卫星遥感应用重点实验室,南京 210013
Precise mapping of open beach areas by combining laser point clouds and stereo optical satellite imagery
WANG Zongwei1,2(), LU Minyan1,2, FAN Yilin1,2
1. Jiangsu Province Surveying and Mapping Engineering Institute, Nanjing 210013, China
2. Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources, Nanjing 210013, China
全文: PDF(5828 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为解决露滩地区立体卫星影像精准测绘的难题,利用立体光学卫星影像与激光雷达(light detection and ranging,LiDAR)点云数据在几何定位方面的互补特性,提出了以高精度LiDAR点云数据作为广义控制的立体光学卫星影像高精度测绘方法。首先,对LiDAR深度图与光学卫星影像进行匹配,提取同名点对作为广义控制; 然后,将影像和控制一起作为输入进行平差,完成影像准确几何定位; 最后,以LiDAR点云数据作为引导,结合多基线、多基元的匹配算法和GRM(geomorphologic refined matching)算法,自动提取露滩地区高精度数字表面模型(digital surface model,DSM)。研究结果表明,综合利用激光点云和立体卫星影像数据,运用摄影测量技术,能够快速准确地生产露滩地区高精度的地形图,对于露滩地形精准测绘具有一定的指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宗伟
陆敏燕
范仪琳
关键词 立体光学卫星LiDAR点云几何定位DSM自动提取    
Abstract

This study aims to overcome the challenges of precise mapping of open beach areas using stereo satellite imagery. Based on the complementary characteristics of stereo optical satellite imagery and light detection and ranging (LiDAR) point cloud data in geometric positioning, this study developed a high-precision mapping method that employed high-precision LiDAR point cloud data for generalized control. First, the LiDAR depth map was matched with the optical satellite images to extract corresponding point pairs for generalized control. Then, the images and control points were used as inputs for adjustment to achieve an accurate geometric positioning of the images. Finally, guided by LiDAR point cloud data and in combination with multi-baseline and multi-primitive matching algorithms and the geomorphologic refined matching (GRM) algorithm, a high-precision digital surface model (DSM) for open beach areas was automatically extracted. The results of this study indicate that the combined use of laser point clouds and stereo satellite imagery, along with photogrammetric technology, allows for the quick and accurate preparation of high-precision topographic maps of open beach areas. This study provides valuable guidance for the precise mapping of open beach areas.

Key wordsstereo optical satellite    LiDAR point cloud    geometric positioning    DSM automatic extraction
收稿日期: 2023-05-09      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:江苏省自然资源发展专项资金(海洋科技创新)项目“江苏自然岸线识别与浅水地形探测技术研究”(JSZRHYKJ202002)
作者简介: 王宗伟(1988-),男,研究生,高级工程师,主要从事卫星遥感应用研究。Email: wangzongwei328@163.com
引用本文:   
王宗伟, 陆敏燕, 范仪琳. 联合激光点云与立体卫星影像的露滩地区精准测绘[J]. 自然资源遥感, 2024, 36(4): 135-141.
WANG Zongwei, LU Minyan, FAN Yilin. Precise mapping of open beach areas by combining laser point clouds and stereo optical satellite imagery. Remote Sensing for Natural Resources, 2024, 36(4): 135-141.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023118      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/135
Fig.1  本文技术流程
Fig.2  研究区位置
Fig.3  立体卫星影像对
Fig.4  三维激光点云数据
Fig.5  LiDAR与GF-7立体卫星影像自动提取像控点点位分布
Fig.6  无控制与有控制条件下纯影像匹配精度对比
Fig.7  卫星影像几何定位后激光点云辅助匹配与直接匹配生成的DSM效果对比
Fig.8  有控条件下纯影像匹配与激光点云辅助匹配精度对比
[1] Zhu Q, Jiang W, Zhu Y, et al. Geometric accuracy improvement method for high-resolution optical satellite remote sensing imagery combining multi-temporal SAR imagery and GLAS data[J]. Remote Sensing, 2020, 12(3):568.
[2] 付琨, 孙显, 仇晓兰, 等. 遥感大数据条件下多星一体化处理与分析[J]. 遥感学报, 2021, 25(3):691-707.
Fu K, Sun X, Qiu X L, et al. Multi-satellite integrated processing and analysis method under remote sensing big data[J]. National Remote Sensing Bulletin, 2021, 25(3):691-707.
[3] Tang S, Wu B, Zhu Q. Combined adjustment of multi-resolution satellite imagery for improved geo-positioning accuracy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:125-136.
[4] 李红帅. 基于激光点云图像融合的三维重建方法与应用[D]. 桂林: 桂林电子科技大学, 2021.
Li H S. Three-dimensional reconstruction method and application based on laser point cloud image fusion[D]. Guilin: Guilin University of Electronic Technology, 2021.
[5] Dai J, Li D F, Li Y Q, et al. Mobile robot localization and mapping algorithm based on the fusion of image and laser point cloud[J]. Sensors, 2022, 22(11):4114.
[6] Chan S H, Wu P T, Fu L C. Robust 2D indoor localization through laser SLAM and visual SLAM fusion[C]// 2018 IEEE International Conference on Systems,Man,and Cybernetics (SMC).Miyazaki,Japan.IEEE, 2018:1263-1268.
[7] Zhang L, Wang G, Sun W. Automatic extraction of building geometries based on centroid clustering and contour analysis on oblique images taken by unmanned aerial vehicles[J]. International Journal of Geographical Information Science, 2022, 36(3):453-475.
[8] Zhou G, Zhou X. Seamless fusion of LiDAR and aerial imagery for building extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7393-7407.
[9] Abayowa B O, Yilmaz A, Hardie R C. Automatic registration of optical aerial imagery to a LiDAR point cloud for generation of city models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:68-81.
[10] Su Y J, Guo Q H, Ma Q, et al. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR,airborne LiDAR,and optical imagery[J]. Remote Sensing, 2015, 7(9):11202-11225.
[11] Li J Y, Hu Q W, Ai M Y. RIFT:Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2019:3296-3310.
[12] Ye Y, Shan J, Bruzzone L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2941-2958.
[13] Ye Y X, Bruzzone L, Shan J, et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9059-9070.
[14] 樊仲藜, 张力, 王庆栋, 等. SAR影像和光学影像梯度方向加权的快速匹配方法[J]. 测绘学报, 2021, 50(10):1390-1403.
doi: 10.11947/j.AGCS.2021.20200587
Fan Z L, Zhang L, Wang Q D, et al. A fast matching method of SAR and optical images using angular weighted orientated gradients[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1390-1403.
doi: 10.11947/j.AGCS.2021.20200587
[15] 张力, 刘玉轩, 孙洋杰, 等. 数字航空摄影三维重建理论与技术发展综述[J]. 测绘学报, 2022, 51(7):1437-1457.
doi: 10.11947/j.AGCS.2022.20220130
Zhang L, Liu Y X, Sun Y J, et al. A review of developments in the theory and technology of three-dimensional reconstruction in digi-tal aerial photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1437-1457.
[16] 张力, 艾海滨, 许彪, 等. 基于多视影像匹配模型的倾斜航空影像自动连接点提取及区域网平差方法[J]. 测绘学报, 2017, 46(5):554-564.
doi: 10.11947/j.AGCS.2017.20160571
Zhang L, Ai H B, Xu B, et al. Automatic tie-point extraction based on multiple-image matching and bundle adjustment of large block of oblique aerial images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):554-564.
doi: 10.11947/j.AGCS.2017.20160571
[1] 朱军桃, 王雷, 赵传, 郑旭东. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4): 20-25.
[2] 韩杰, 陶醉, 李慧娜, 苗宝亮, 石宏斌, 刘其悦. GF-4卫星影像几何定位精度分析[J]. 国土资源遥感, 2019, 31(3): 104-110.
[3] 郑莎莎, 董品亮, 王成, 习晓环, 吕毅斌. 基于LiDAR点云数据的树冠空隙度指数分析[J]. 国土资源遥感, 2014, 26(4): 103-110.
[4] 李峰, 崔希民, 袁德宝, 王强, 吴亚军. 利用机载LiDAR点云提取复杂城市建筑物面域[J]. 国土资源遥感, 2013, 25(3): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发