Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 314-320    DOI: 10.6046/zrzyyg.2023177
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于PlanetScope光学小卫星与ICESat-2激光测高数据的极地冰盖冰面湖水深遥感反演
朱雨欣1,2,3(), 满梦甜1,2,3, 王裕涵1,2,3, 陈定华1,2,3, 杨康1,2,3()
1.南京大学地理与海洋科学学院,南京 210023
2.江苏省地理信息技术重点实验室,南京 210023
3.中国南海研究协同创新中心,南京 210023
Remote sensing-based bathymetry retrieval of supraglacial lakes on polar ice sheets using images from small optical satellite PlanetScope and ICESat-2 laser altimetry data
ZHU Yuxin1,2,3(), MAN Mengtian1,2,3, WANG Yuhan1,2,3, CHEN Dinghua1,2,3, YANG Kang1,2,3()
1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China
全文: PDF(3940 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

每年消融期,冰面湖广泛分布于极地冰盖表面,能够存储大量冰面融水,但部分冰面湖底部破裂后会输送融水进入冰盖底部,从而影响冰盖运动与稳定性。因此,准确测算冰面湖水深信息,进而估算冰面湖体积及其动态变化,对于理解极地冰盖水文过程具有重要意义。然而,实地测量冰面湖深度难度大、成本高、覆盖范围小,通过中低空间分辨率光学遥感影像构建的冰面湖水深反演模型精度不足。该研究综合PlanetScope SuperDove光学小卫星8波段遥感影像(空间分辨率为3 m)与ICESat-2激光测高数据反演冰面湖水深。首先,通过自适应核密度估计分离并拟合湖面与湖底ICESat-2激光测高点云,进而获取冰面湖水深观测结果; 其次,利用最佳波段比值分析PlanetScope影像不同波段(组合)与ICESat-2水深数据的相关关系,构建二次函数、指数函数、幂函数与对数函数4种冰面湖水深反演经验公式; 最后,选择4个具有同时期PlanetScope和ICESat-2数据覆盖的冰面湖,测试冰面湖水深遥感反演的精度。结果表明PlanetScope绿光I波段是冰面湖水深反演最佳波段,单波段反射率与冰面湖水深相关性最强(R2=0.94),水深反演精度最高(均方根误差为1.0 m,相对均方根误差为0.15)。研究揭示了综合主被动卫星数据分析极地冰盖水文过程的良好潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱雨欣
满梦甜
王裕涵
陈定华
杨康
关键词 冰面湖PlanetScopeICESat-2水深反演    
Abstract

During the melt season, supraglacial lakes are widely distributed across polar ice sheets, storing large amounts of surface meltwater. When some of these supraglacial lakes rupture at the bottom, the released meltwater infiltrates ice sheets, affecting their movement and stability. Therefore, accurate bathymetry retrieval of supraglacial lakes and estimating the volume of supraglacial lakes are significant for understanding the hydrological processes of polar ice sheets. However, field measurement of supraglacial lake depth is difficult, costly, and small-scale. Meanwhile, the bathymetry models derived from optical satellite images with low to medium spatial resolutions are insufficiently accurate. Given these, this study conducted the bathymetry retrieval of supraglacial lakes based on eight-band remote sensing images from the small-size optical satellite PlanetScope SuperDove (spatial resolution: 3 m) and ICESat-2 laser altimetry data. First, the ICESat-2 laser altimetry point clouds data for the lake surface and bottom were separated and modeled using adaptive kernel density estimation to derive lake depth observations. Second, Optimal Band Ratio Analysis (OBRA) was used to examine the correlations between various bands of PlanetScope images (and combinations thereof) and ICESat-2 bathymetry data, leading to the development of four kinds of empirical formulas for the bathymetry retrieval of supraglacial lakes: quadratic, exponential, power, and logarithmic functions. Then, four supraglacial lakes covered by concurrent PlanetScope and ICESat-2 data were selected to test the retrieval accuracy. The results indicate that the Green I band of PlanetScope is the most favorable for the bathymetry retrieval, demonstrating the strongest correlation with the ICESat-2 derived depths (R2=0.94) and the highest inversion accuracy (RMSE=1.0 m, RRMSE=0.15). The study reveals that integrating active and passive satellite data has great potential for analyzing hydrological processes in polar ice sheets.

Key wordssupraglacial lake    PlanetScope    ICESat-2    bathymetry
收稿日期: 2023-06-25      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家重点研发计划项目子课题“复杂陆地海洋环境异常动态遥感监测”(2022YFB3903601);国家自然科学基金面上项目“格陵兰北部地区融水汇流过程遥感观测、模拟与影响分析”(42271320)
通讯作者: 杨康(1986-),男,博士,副教授,主要从事冰冻圈水文遥感研究。Email: kangyang@nju.edu.cn
作者简介: 朱雨欣(2001-),女,本科,主要从事冰冻圈水文遥感研究。Email: yuxin_zhu_nju@163.com
引用本文:   
朱雨欣, 满梦甜, 王裕涵, 陈定华, 杨康. 基于PlanetScope光学小卫星与ICESat-2激光测高数据的极地冰盖冰面湖水深遥感反演[J]. 自然资源遥感, 2024, 36(4): 314-320.
ZHU Yuxin, MAN Mengtian, WANG Yuhan, CHEN Dinghua, YANG Kang. Remote sensing-based bathymetry retrieval of supraglacial lakes on polar ice sheets using images from small optical satellite PlanetScope and ICESat-2 laser altimetry data. Remote Sensing for Natural Resources, 2024, 36(4): 314-320.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023177      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/314
Fig.1  研究区Sentinel-2遥感影像及局部区域PlanetScope遥感影像
区域编号 数据获取时间 ICESat-2数据编号 PlanetScope影像编号
1 2021-07-20 20210720053125_04061205_005_01 20210720_135021_19_2455
2 20210720_144349_03_2405
3 20210720_133408_92_242d
4 20210720_133408_92_242d
Tab.1  研究数据列表
Fig.2  冰面湖剖面拟合结果
Fig.3  不同波段(组合)拟合经验公式结果R2对比
Fig.4  冰面湖水深反演经验公式拟合结果
Fig.5  PlanetScope遥感影像及其反演结果
[1] Bamber J L, Westaway R M, Marzeion B, et al. The land ice contribution to sea level during the satellite era[J]. Environmental Research Letters, 2018, 13(6):063008.
[2] 杨康. 格陵兰冰盖表面消融研究进展[J]. 冰川冻土, 2013, 35(1):101-109.
doi: 10.7522/j.issn.1000-0240.2013.0012
Yang K. The progress of Greenland Ice Sheet surface ablation research[J]. Journal of Glaciology and Geocryology, 2013, 35(1):101-109.
doi: 10.7522/j.issn.1000-0240.2013.0012
[3] McMillan M, Nienow P, Shepherd A, et al. Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet[J]. Earth and Planetary Science Letters, 2007, 262(3/4):484-492.
[4] 杨康, 刘巧. 冰川表面水文过程研究进展[J]. 冰川冻土, 2016, 38(6):1666-1678.
doi: 10.7522/j.issn.1000-0240.2016.0194
Yang K, Liu Q. Supraglacial drainage system:A review[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1666-1678.
[5] Stevens L A, Behn M D, McGuire J J, et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip[J]. Nature, 2015, 522(7554):73-76.
[6] Tuckett P A, Ely J C, Sole A J, et al. Rapid accelerations of An-tarctic Peninsula outlet glaciers driven by surface melt[J]. Nature Communications, 2019, 10:4311.
doi: 10.1038/s41467-019-12039-2 pmid: 31541114
[7] Box J E, Ski K. Remote sounding of Greenland supraglacial melt lakes:Implications for subglacial hydraulics[J]. Journal of Glaci-ology, 2007, 53(181):257-265.
[8] Tedesco M, Steiner N. In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft[J]. The Cryosphere, 2011, 5(2):445-452.
[9] Legleiter C J, Tedesco M, Smith L C, et al. Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images[J]. The Cryosphere, 2014, 8(1):215-228.
[10] Fitzpatrick A A W, Hubbard A L, Box J E, et al. A decade (2002—2012) of supraglacial lake volume estimates across Russell Glacier,West Greenland[J]. The Cryosphere, 2014, 8(1):107-121.
[11] Pope A, Scambos T A, Moussavi M, et al. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods[J]. The Cryosphere, 2016, 10(1):15-27.
[12] Moussavi M S, Abdalati W, Pope A, et al. Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery[J]. Remote Sensing of Environment, 2016, 183:294-303.
[13] Hsu H J, Huang C Y, Jasinski M, et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2:A case study in the South China Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178:1-19.
[14] Albright A, Glennie C. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):900-904.
doi: 10.1109/LGRS.2020.2987778
[15] Xu N, Ma X, Ma Y, et al. Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:6677-6685.
[16] Fair Z, Flanner M, Brunt K M, et al. Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals[J]. The Cryosphere, 2020, 14(11):4253-4263.
[17] Fricker H A, Arndt P, Brunt K M, et al. ICESat-2 meltwater depth estimates:Application to surface melt on Amery Ice Shelf,East Antarctica[J]. Geophysical Research Letters, 2021, 48(8):e2020GL090550.
[18] Qayyum N, Ghuffar S, Ahmad H, et al. Glacial lakes mapping using multi satellite PlanetScope imagery and deep learning[J]. ISPRS International Journal of Geo-Information, 2020, 9(10):560.
[19] Datta R T, Wouters B. Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery[J]. The Cryosphere, 2021, 15(11):5115-5132.
[20] Roy D P, Huang H, Houborg R, et al. A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery[J]. Remote Sensing of Environment, 2021, 264:112586.
[21] Bamber J L, Layberry R L, Gogineni S P. A new ice thickness and bed data set for the Greenland ice sheet:1.Measurement,data reduction,and errors[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D24):33773-33780.
[22] Noël B, van de Berg W J, Lhermitte S, et al. Rapid ablation zone expansion amplifies North Greenland mass loss[J]. Science Advances, 2019, 5(9):eaaw0123.
[23] Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751.
[24] Babbel B J, Parrish C E, Magruder L A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications[J]. Geophysical Research Letters, 2021, 48(5):e2020GL090629.
[25] Ranndal H, Sigaard Christiansen P, Kliving P, et al. Evaluation of a statistical approach for extracting shallow water bathymetry signals from ICESat-2 ATL03 photon data[J]. Remote Sensing, 2021, 13(17):3548.
[26] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote Sensing, 2019, 11(14):1634.
[27] Cao B, Fang Y, Gao L, et al. An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery[J]. International Journal of Remote Sensing, 2021, 42(8):2783-2806.
[28] Li Y, Gao H, Zhao G, et al. A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and alti-metry[J]. Remote Sensing of Environment, 2020, 244:111831.
[29] Neumann T A, Martino A J, Markus T, et al. The Ice,Cloud,and Land Elevation Satellite - 2 mission:A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System[J]. Remote Sensing of Environment, 2019, 233:111325.
[30] Yuan C, Gong P, Bai Y. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China[J]. Remote Sensing, 2020, 12(5):770.
[31] Smith B, Fricker H A, Holschuh N, et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment, 2019, 233:111352.
[1] 张闻松, 朱雨欣, 邱玉宝, 王裕涵, 刘金昱, 杨康. 全格陵兰冰盖表面融水卫星遥感观测[J]. 自然资源遥感, 2024, 36(1): 110-117.
[2] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[3] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[4] 马山木, 甘甫平, 吴怀春, 闫柏琨. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
[5] 党福星, 丁谦. 多光谱浅海水深提取方法研究[J]. 国土资源遥感, 2001, 13(4): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发