Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 110-117    DOI: 10.6046/zrzyyg.2022438
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
全格陵兰冰盖表面融水卫星遥感观测
张闻松1,2,3(), 朱雨欣1, 邱玉宝4,5, 王裕涵1, 刘金昱1, 杨康1,2,3()
1.南京大学地理与海洋科学学院,南京 210023
2.江苏省地理信息技术重点实验室,南京 210023
3.中国南海研究协同创新中心,南京 210023
4.中国科学院空天信息创新研究院,中国科学院数字地球重点实验室,北京 100094
5.中国科学院空天信息创新研究院和芬兰气象研究所北极观测联合研究中心,索丹屈莱 999018
Remote sensing observation of surface meltwater on the Greenland Ice Sheet
ZHANG Wensong1,2,3(), ZHU Yuxin1, QIU Yubao4,5, WANG Yuhan1, LIU Jinyu1, YANG Kang1,2,3()
1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China
4. Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
5. Joint Research Center for Arctic Observations, Aerospace Information Research Institute, Chinese Academy of Sciences and Arctic Space Center, Finnish Meteorological Institute (JRC-AO), Sodankyä l999018, Finland
全文: PDF(9018 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

每年夏季,格陵兰冰盖表面消融产生大量融水。冰面融水由冰面河输送,存储在冰面湖或注水冰裂隙中,形成了规模庞大、结构复杂的水文系统。然而,目前研究对全格陵兰冰面融水空间分布的理解十分有限。文章利用134景10 m空间分辨率的Sentinel-2遥感影像,提取了2019年消融旺盛期格陵兰冰面融水遥感信息; 进一步,对比分析了遥感观测的冰面融水分布与区域大气气候模型(regional atmospheric climate model,RACMO)模拟的冰面融水径流量。结果表明: ①2019年消融旺盛期,格陵兰冰面融水面积为9 900.9 km2,融水体积为6.8 km3; ②格陵兰冰面融水的空间分布差异较大,呈现明显的“西多东少”“北多南少”的态势; ③格陵兰冰面融水主要由冰面河组成,冰面河占冰面融水总体积的57.1%,其次是注水冰裂隙(25.6%)和冰面湖(17.3%); ④RACMO在多数流域准确模拟了冰面融水径流区域。研究反映了高分辨率遥感在格陵兰冰面水文研究中的应用潜力,提升了对冰面融水输送与存储等关键水文过程的理解。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张闻松
朱雨欣
邱玉宝
王裕涵
刘金昱
杨康
关键词 冰面河冰面湖注水冰裂隙Sentinel-2格陵兰冰盖    
Abstract

Every summer, the surface melting on the Greenland Ice Sheet (GrIS) results in a large amount of surface meltwater, which is transported via supraglacial rivers and stored supraglacial lakes and water-filled crevasses, forming a large-scale and complex hydrologic system. However, there is a lack of studies on the spatial distribution of surface meltwater on the GrIS. This study extracted the surface meltwater information of the GrIS during the peak melting period in 2019 using 134 scenes of 10-m-resolution Sentinel-2 satellite images. Furthermore, we compared the surface meltwater distribution derived from the remote sensing observation and the surface meltwater runoff simulated by the regional atmospheric climate model (RACMO). The results show that: ① During the peak melting period in 2019, the GrIS exhibited a surface meltwater area of 9 900.9 km2 and a surface meltwater volume of 6.8 km3; ② The GrIS surface meltwater exhibited a significantly varying spatial distribution characterized by high volumes in the western and northern basins and low volumes in the eastern and southern basins; ③ The surface meltwater on the GrIS was primarily composed of supraglacial rivers, which accounted for 57.1% of the overall surface meltwater volume, followed by water-filled crevasses (25.6%) and supraglacial lakes (17.3%); ④ RACMO accurately simulated the surface meltwater runoff regions in most GrIS basins. This study enhanced the understanding of key hydrologic processes such as surface meltwater routing and storage, demonstrating the high application potential of high-resolution remote sensing images in the hydrologic research of the GrIS.

Key wordssupraglacial river    supraglacial lake    water-filled crevasse    Sentinel-2    Greenland Ice Sheet
收稿日期: 2022-11-07      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“格陵兰冰盖表面融水输送关键过程遥感监测”(41871327);“格陵兰北部地区融水汇流过程遥感观测、模拟与影响分析”(42271320);中国科学院战略性先导科技专项(A类)“高山与极地寒区河湖海冰变化遥感: 协同与对比”(XDA19070201)
通讯作者: 杨 康(1986-),男,博士,副教授,主要从事冰冻圈水文遥感研究。Email: kangyang@nju.edu.cn
作者简介: 张闻松(1998-),男,硕士研究生,主要从事冰冻圈水文遥感研究。Email: wensong_z@outlook.com
引用本文:   
张闻松, 朱雨欣, 邱玉宝, 王裕涵, 刘金昱, 杨康. 全格陵兰冰盖表面融水卫星遥感观测[J]. 自然资源遥感, 2024, 36(1): 110-117.
ZHANG Wensong, ZHU Yuxin, QIU Yubao, WANG Yuhan, LIU Jinyu, YANG Kang. Remote sensing observation of surface meltwater on the Greenland Ice Sheet. Remote Sensing for Natural Resources, 2024, 36(1): 110-117.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022438      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/110
Fig.1  RACMO模型模拟的2019年格陵兰冰面融水径流量及Sentinel-2影像主要成像时段
Fig.2  格陵兰冰面融水卫星遥感信息提取方法
Fig.3  2019年消融旺盛期格陵兰冰盖各流域冰面融水体积
Fig.4  2019年消融旺盛期格陵兰冰面融水空间分布
Fig.5  2019年消融旺盛期格陵兰冰盖日均冰面融水径流量与冰面融水海拔上限
Fig.6  2019年消融旺盛期格陵兰冰盖8个主要流域冰面融水体积与日均冰面融水径流量
Fig.7  2019年消融旺盛期冰面融水体积占累积冰面融水径流量的比例
[1] Van Den Broeke M R, Enderlin E M, Howat I M, et al. On the recent contribution of the Greenland ice sheet to sea level change[J]. The Cryosphere, 2016, 10(5):1933-1946.
doi: 10.5194/tc-10-1933-2016
[2] Shepherd A, Ivins E, Rignot E, et al. Mass balance of the Greenland ice sheet from 1992 to 2018[J]. Nature, 2020, 579(7798):233-239.
doi: 10.1038/s41586-019-1855-2
[3] Rennermalm A K, Moustafa S E, Mioduszewski J, et al. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach[J]. Environmental Research Letters, 2013, 8(1):015017.
doi: 10.1088/1748-9326/8/1/015017
[4] Zwally H J, Abdalati W, Herring T, et al. Surface melt-induced acceleration of Greenland ice-sheet flow[J]. Science, 2002, 297(5579):218-222.
pmid: 12052902
[5] Smith L C, Chu V W, Yang K, et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4):1001-1006.
doi: 10.1073/pnas.1413024112 pmid: 25583477
[6] Das S B, Joughin I, Behn M D, et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage[J]. Science, 2008, 320(5877):778-781.
doi: 10.1126/science.1153360 pmid: 18420900
[7] McGrath D, Colgan W, Steffen K, et al. Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region,Greenland ice sheet[J]. Journal of Glaciology, 2011, 57(205):954-964.
doi: 10.3189/002214311798043735
[8] Colgan W, Steffen K, Mclamb W S, et al. An increase in crevasse extent,West Greenland:Hydrologic implications[J]. Geophysical Research Letters, 2011, 38:L18502.
[9] Hu J, Huang H, Chi Z, et al. Distribution and evolution of supraglacial lakes in Greenland during the 2016—2018 melt seasons[J]. Remote Sensing, 2021, 14(1):55.
doi: 10.3390/rs14010055
[10] Selmes N, Murray T, James T D. Fast draining lakes on the Greenland Ice Sheet[J]. Geophysical Research Letters, 2011, 38(15):L15501.
[11] Dunmire D, Banwell A F, Wever N, et al. Contrasting regional variability of buried meltwater extent over 2 years across the Greenland ice sheet[J]. The Cryosphere, 2021, 15(6):2983-3005.
doi: 10.5194/tc-15-2983-2021
[12] Chudley T R, Christoffersen P, Doyle S H, et al. Controls on water storage and drainage in crevasses on the Greenland Ice Sheet[J]. Journal of Geophysical Research:Earth Surface, 2021, 126: e2021JF006287.
[13] Yang K, Smith L C, Sole A, et al. Supraglacial rivers on the northwest Greenland Ice Sheet,Devon Ice Cap,and Barnes ice cap mapped using Sentinel-2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78:1-13.
doi: 10.1016/j.jag.2019.01.008
[14] Tedstone A J, Machguth H. Increasing surface runoff from Greenland’s firn areas[J]. Nature Climate Change, 2022, 12:672-676.
doi: 10.1038/s41558-022-01371-z pmid: 35811787
[15] Fettweis X, Hofer S, Krebs-Kanzow U, et al. GrSMBMIP:intercomparison of the modelled 1980—2012 surface mass balance over the Greenland Ice Sheet[J]. The Cryosphere, 2020, 14(11):3935-58.
doi: 10.5194/tc-14-3935-2020
[16] Noël B, Van De Berg W J, Van Wessem J M, et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part 1:Greenland (1958—2016)[J]. The Cryosphere,2018, 12(3):811-31.
doi: 10.5194/tc-12-811-2018
[17] Howat I M. MEaSUREs Greenland Ice Mapping Project (GIMP) land ice and ocean classification mask,Version 1[Z].Boulder,Colorado USA:NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017.
[18] Cheng D, Hayes W, Larour E, et al. Calving Front Machine (CALFIN):Glacial termini dataset and automated deep learning extraction method for Greenland,1972—2019[J]. The Cryosphere, 2021, 15(3):1663-1675.
doi: 10.5194/tc-15-1663-2021
[19] Morlighem M, Williams C N, Rignot E, et al. Icebridge Bed Machine Greenland,version 4[Z].Boulder,Colorado USA:NASA National Snow and Ice Data Center Distributed Active Archive Center, 2021.
[20] Joughin I. MEaSUREs Greenland annual ice sheet velocity mosaics from SAR and Landsat,Version 3[Z].Boulder,Colorado USA:NASA National Snow and Ice Data Center Distributed Active Archive Center, 2021.
[21] Mcfeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714
[22] Heijmans H, Buckley M, Talbot H. Path openings and closings[J]. Journal of Mathematical Imaging and Vision, 2005, 22(2):107-119.
doi: 10.1007/s10851-005-4885-3
[23] Burgess D O, Sharp M J, Mair D W F, et al. Flow dynamics and iceberg calving rates of Devon Ice Cap,Nunavut,Canada[J]. Journal of Glaciology, 2005, 51(173):219-230.
doi: 10.3189/172756505781829430
[24] Williamson A G, Banwell A F, Willis I C, et al. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland[J]. The Cryosphere, 2018, 12(9):3045-3065.
doi: 10.5194/tc-12-3045-2018
[25] Corr D, Leeson A, McMillan M, et al. An inventory of supraglacial lakes and channels across the West Antarctic ice sheet[J]. Earth System Science Data, 2022, 14(1):209-228.
doi: 10.5194/essd-14-209-2022
[26] Fitzpatrick A A W, Hubbard A L, Box J E, et al. A decade (2002—2012) of supraglacial lake volume estimates across Russell Glacier,West Greenland[J]. The Cryosphere,2014, 8(1):107-121.
doi: 10.5194/tc-8-107-2014
[27] Leeson A A, Shepherd A, Briggs K, et al. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate[J]. Nature Climate Change, 2015, 5(1):51-55.
doi: 10.1038/nclimate2463
[28] Yang K, Smith L C, Cooper M G, et al. Seasonal evolution of supraglacial lakes and rivers on the southwest Greenland Ice Sheet[J]. Journal of Glaciology, 2021, 67(264):592-602.
doi: 10.1017/jog.2021.10
[29] Muthyala R, Rennermalm A, Leidman S, et al. Supraglacial streamflow and meteorological drivers from southwest Greenland[J]. The Cryosphere, 2022, 16(6):2245-2263.
doi: 10.5194/tc-16-2245-2022
[30] 李岚静, 陈卓奇, 郑雷, 等. 格陵兰冰盖次表面湖多源遥感监测——以格陵兰中西部流域为例[J]. 地球物理学报, 2022, 65(10):3818-28.
Li L J, Chen Z Q, Zheng L, et al. Extraction of Greenland Ice Sheet buried lakes using multi-source remote sensing data:With application to the central west basin of Greenland[J]. Chinese Journal of Geophysics, 2022, 65(10):3818-3828.
[31] Jiang D, Li X, Zhang K, et al. Automatic supraglacial lake extraction in Greenland using Sentinel-1 SAR images and attention-based U-Net[J]. Remote Sensing, 2022, 14(19):4998.
doi: 10.3390/rs14194998
[32] Schröder L, Neckel N, Zindler R, et al. Perennial supraglacial lakes in Northeast Greenland observed by polarimetric SAR[J]. Remote Sensing, 2020, 12(17):2798.
doi: 10.3390/rs12172798
[33] Ignéczi Á, Sole A J, Livingstone S J, et al. Northeast sector of the Greenland ice sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century[J]. Geophysical Research Letters, 2016, 43(18):9729-9738.
doi: 10.1002/grl.v43.18
[34] Miège C, Forster R R, Brucker L, et al. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars[J]. Journal of Geophysical Research:Earth Surface, 2016, 121(12):2381-2398.
doi: 10.1002/jgrf.v121.12
[35] Ryan J C, Smith L C, Van As D, et al. Greenland ice sheet surface melt amplified by snowline migration and bare ice exposure[J]. Science Advances, 2019, 5(3):eaav3738.
doi: 10.1126/sciadv.aav3738
[36] Miller J Z, Culberg R, Long D G, et al. An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry[J]. The Cryosphere, 2022, 16(1):103-125.
doi: 10.5194/tc-16-103-2022
[1] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[2] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
[3] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[4] 侯英卓, 纪灵, 邢前国, 盛德志. 卫星遥感辅助的大型海藻养殖动态对比监测——以威海市为例[J]. 自然资源遥感, 2023, 35(2): 34-41.
[5] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[6] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[7] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[8] 赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
[9] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[10] 蔡耀通, 刘书彤, 林辉, 张猛. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
[11] 刘智丽, 张启斌, 岳德鹏, 郝玉光, 苏凯. 基于Sentinel-2A与NPP-VIIRS夜间灯光数据的城市建成区提取[J]. 国土资源遥感, 2019, 31(4): 227-234.
[12] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发