Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 92-106    DOI: 10.6046/zrzyyg.2023308
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
ESA CCI土壤湿度资料在中国东部的综合评估
凌肖露1,2(), 陈朝荣3, 郭维栋4, 秦凯1,2, 张锦龙5
1.中国矿业大学环境与测绘学院,徐州 221116
2.江苏省煤基温室气体减排与资源化利用重点实验室,中国矿业大学,徐州 221008
3.青海师范大学地理科学学院,西宁 810008
4.南京大学大气科学学院,南京 210023
5.创亚普产业技术研究院,徐州 221116
Comprehensive evaluation of ESA CCI soil moisture data in eastern China
LING Xiaolu1,2(), CHEN Chaorong3, GUO Weidong4, QIN Kai1,2, ZHANG Jinlong5
1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2. Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
3. School of Geographical Sciences, Qinghai Normal University, Xining 810008, China
4. School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
5. Jiangsu CYP Light Heat Electronics Industrial Technology Research Insitute, Ltd., Xuzhou 221116, China
全文: PDF(10199 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

卫星遥感的土壤湿度产品为研究区域尺度的气候变化、水文效应等提供了便利,然而由于观测标准不统一、仪器更迭等因素,长时间序列土壤湿度数据集在我国的验证和应用犹显不足。该文基于中国气象局农气数据集和国际土壤水分网络(international soil moisture network, ISMN)的土壤湿度资料,首先构建了1981—2013年中国东部地区土壤湿度的月数据集; 并在此基础上对比分析了同时间段欧洲航天局气候变化倡议项目(European apace agency climate change initiative, ESA CCI)的4种微波遥感土壤湿度产品(包括主动、被动、融合和校正的融合产品)在中国东部的表现能力。结果显示,主动产品和被动产品分别低估、高估了中国东部的土壤湿度,其中主动产品的最大偏差分布在华北和西北地区,相对偏差分别达到-30.9%和-29.6%,被动产品在东北和西北地区的相对偏差分别为39.1%和26.5%,融合产品可以很好地改进东北地区和西北地区主动产品低估、被动产品高估的现象,相对偏差分别减少到24.3%和3.7%。对区域平均的月土壤湿度的变化特征而言,主动产品和融合产品在江淮地区的表现最优,最高相关系数达0.66,被动产品和融合产品在东北地区的相关系数达0.44和0.47,华北地区和西北地区较差。通过对遥感产品方差来源进行分析,主动产品在描述土壤湿度的演变特征方面更具优势,被动产品在精度方面表现更优,融合产品在精度方面表现最佳。该文同时研究了CCI集成卫星设备的更迭对产品表现的影响,结果表明,不同时间段的主动产品在东北和西北表现较一致,被动传感器在再现土壤湿度的变化特征方面还有一定的差距,融合产品的整体方差明显优于主动产品和被动产品,但是在相关系数方面,融合产品在东北和西北较主动产品基本相当。校正后的融合产品没有特别明显的改进,这在一定程度上证明了利用CCI融合产品进行长期研究的可行性。研究结果有助于更深刻地理解不同卫星产品数据集的误差结构和特性,为研究者挑选相应数据产品、以及进行长时间序列的研究提供了证据支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
凌肖露
陈朝荣
郭维栋
秦凯
张锦龙
关键词 土壤湿度卫星遥感设备更替长时间序列ESA CCI中国东部突变检验和校正综合评估    
Abstract

Soil moisture products based on remote sensing are crucial for investigating climatic change and hydrological effects on a regional scale. However, there is a lack of verification and application of long-term soil moisture datasets in China due to factors such as inconsistent observation standards and instrument upgrades. Using the agro-meteorological dataset from the China Meteorological Administration and soil moisture data from the International Soil Moisture Network (ISMN), this study constructed a monthly dataset of soil moisture in eastern China covering the period from 1981 to 2013. Accordingly, this study analyzed and compared the performance of four microwave remote sensing-based soil moisture products developed by the European Space Agency’s Climate Change Initiative (ESA CCI): active, passive, combined, and combined adjusted products. The results indicate that active and passive products underestimated and overestimated soil moisture in eastern China, respectively. The maximum deviations from active products were found in the northern and northwestern regions, with relative deviations of -30.9% and -29.6%, respectively. In contrast, the passive products showed relative deviations of 39.1% and 26.5%, respectively for soil moisture in northeastern and northwestern regions. The combined products mitigated the underestimation of the active products and the overestimation of the passive product in these regions, reducing the relative deviations to 24.3% and 3.7%, respectively. Regarding the variation characteristics of regional monthly average soil moisture, both the active and combined products performed best for soil moisture in the Yangtze-Huaihe (YH) region, with the highest correlation coefficient of 0.66. The passive and combined products yielded correlation coefficients of 0.44 and 0.47, respectively for soil moisture in the northeastern region and performed poorly for soil moisture in the northern and northwestern regions. The analysis of the variance sources of the remote sensing-based products indicates that the active products enjoyed more advantages in describing the evolutionary characteristics of soil moisture, the passive products demonstrated greater accuracy, and the combined products yielded the highest accuracy overall. Additionally, this study investigated the impacts of changes in the integrated satellite equipment of CCI on product performance. The results indicate that the active products exhibited consistent performance for soil moisture in the northeastern and northwestern regions in different periods. However, passive sensors still exhibited gaps in reproducing the variations in soil moisture. The combined products exhibited better overall variance than both active and passive products. However, these products yielded comparable correlation coefficients with the active products for soil moisture in the northeastern and northwestern regions. The combined products presented no notable improvement after correction, proving that it is feasible to conduct long-term research using the combined products of CCI. The results of this study contribute to a deeper understanding of the error structures and characteristics of various satellite product datasets, providing evidence for researchers to select appropriate data products and conduct research on long time series.

Key wordssoil moisture    satellite remote sensing    instrument replacement    long time series    ESA CCI    eastern China    break-adjusted COMBINED product    comprehensive evaluation
收稿日期: 2023-10-09      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家自然科学基金面上项目“陆地植被特征在东亚次季节-季节气候预测中的同化及应用”(42075114);江苏高校优势学科建设项目“测绘科学与技术学科”(140119001);徐州市重点研发计划——现代农业面上项目“基于农业遥感大数据和陆面模型的作物产量精细化监测”(KC21132)
作者简介: 凌肖露(1986-),女,博士,副教授,主要从事生态遥感和大气环境遥感的研究。Email: lingxl@cumt.edu.cn
引用本文:   
凌肖露, 陈朝荣, 郭维栋, 秦凯, 张锦龙. ESA CCI土壤湿度资料在中国东部的综合评估[J]. 自然资源遥感, 2024, 36(4): 92-106.
LING Xiaolu, CHEN Chaorong, GUO Weidong, QIN Kai, ZHANG Jinlong. Comprehensive evaluation of ESA CCI soil moisture data in eastern China. Remote Sensing for Natural Resources, 2024, 36(4): 92-106.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023308      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/92
Fig.1  土壤湿度观测站点分布、分区及下垫面类型分布(审图号: GS京(2024)2618号)
Fig.2  1992—2013年生长季节(4—9月)平均的土壤湿度的空间分布(审图号: GS京(2024)2618号)
Fig.3  1992—2013年4—9月卫星遥感产品和台站观测的偏差空间分布(审图号: GS京(2024)2618号)
Fig.4-1  1992—2013年4—9月卫星遥感产品和台站观测的μbRMSE的空间分布(审图号: GS京(2024)2618号)
Fig.4-2  1992—2013年4—9月卫星遥感产品和台站观测的μbRMSE的空间分布(审图号: GS京(2024)2618号)
Fig.5  1992—2013年4—9月卫星遥感产品和台站观测的泰勒图分布
区域 产品 Bias rBias RMSD rRMSD μbRMSD R
东北 主动产品 -0.066 -21.4% 0.103 42.7% 0.079 0.41
被动产品 0.056 39.1% 0.128 52.8% 0.115 0.16
融合产品 0.022 24.3% 0.095 41.4% 0.092 0.15
校正后融合 0.022 24.3% 0.095 41.4% 0.092 0.15
华北 主动产品 -0.085 -30.9% 0.112 45.5% 0.072 0.38
被动产品 0.002 7.5% 0.094 41.1% 0.094 0.27
融合产品 0.024 20.3% 0.085 37.6% 0.081 0.22
校正后融合 0.030 22.8% 0.085 37.9% 0.080 0.23
江淮 主动产品 -0.084 -29.6% 0.113 45.1% 0.076 0.41
被动产品 -0.007 3.6% 0.101 41.8% 0.100 0.23
融合产品 0.039 26.4% 0.097 41.0% 0.089 0.16
校正后融合 0.046 29.8% 0.099 41.9% 0.087 0.15
西北 主动产品 -0.075 -25.8% 0.106 43.1% 0.076 0.26
被动产品 0.041 26.5% 0.145 61.3% 0.139 0.07
融合产品 -0.009 3.7% 0.087 36.1% 0.087 0.15
校正后融合 -0.005 5.6% 0.086 35.8% 0.086 0.15
Tab.1  不同区域不同产品的统计值
Fig.6  1981—2013年4—9月区域平均的月土壤湿度随时间的演变
Fig.7  1981—2013年4—9月区域平均的月土壤湿度产品的误差分解
产品
类型
时间段 主动传感器 被动传感器



1992年01月—1997年05月 ERS1/2 (AMI-WS) N/A
1997年05月—2003年02月 ERS2 (AMI-WS) N/A
2003年02月—2006年12月 ERS1/2 (AMI-WS) N/A
2007年01月—2012年11月 Metop-A ASCAT N/A
2012年11月—2013年12月 Metop-A ASCAT, Metop-B ASCAT N/A



1992年01月—1997年12月 N/A SSM/I (a/d)
1998年01月—2002年06月 N/A SSM/I (a/d), TMI (a/d)
2002年07月—2007年09月 N/A AMSR-E (a/d), TMI (a/d)
2007年10月—2010年01月 N/A AMSR-E (a/d), Windsat (a/d), TMI (a/d)
2010年01月—2011年05月 N/A AMSR-E (a/d), WindSat (a/d), SMOS (a/d), TMI (a/d)
2011年06月—2011年09月 N/A AMSR-E (a/d), WindSat (a/d), SMOS (a/d), TMI (a/d), FY3B (a/d)
2011年10月—2012年06月 N/A WindSat (a/d), SMOS (a/d), TMI (a/d), FY-3B (a/d)
2012年07月—2013年09月 N/A SMOS (a/d), AMSR2 (a/d), TMI (a/d), FY-3B (a/d)
2013年10月—2013年12月 N/A SMOS (a/d), AMSR2 (a/d), TMI (a/d), FY-3B (a/d), FY-3C (a/d)



1992年01月—1997年12月 AMI-WS SSM/I (a/d)
1998年01月—2002年06月 AMI-WS SSM/I (a/d), TMI (a/d)
2002年07月—2006年12月 AMI-WS AMSR-E (a/d), TMI (a/d)
2007年01月—2007年09月 Metop-A ASCAT AMSR-E (a/d), TMI (a/d)
2007年10月—2010年01月 Metop-A ASCAT AMSR-E (a/d), Windsat (a/d), TMI (a/d)
2010年01月—2011年05月 Metop-A ASCAT AMSR-E (a/d), WindSat (a/d), SMOS (a/d), TMI (a/d)
2011年06月—2011年09月 Metop-A ASCAT AMSR-E (a/d), WindSat (a/d), SMOS (a/d), TMI (a/d), FY3B (a/d)
2011年10月—2012年06月 Metop-A ASCAT WindSat (a/d), SMOS (a/d), TMI (a/d), FY-3B (a/d)
2012年07月—2012年10月 Metop-A ASCAT SMOS (a/d), AMSR2 (a/d), TMI (a/d), FY-3B (a/d)
2012年11月—2013年09月 Metop-A ASCAT, Metop-B ASCAT SMOS (a/d), AMSR2 (a/d), TMI (a/d), FY-3B (a/d)
2013年10月—2013年12月 Metop-A ASCAT, Metop-B ASCAT SMOS (a/d), AMSR2 (a/d), TMI (a/d), FY-3B (a/d), FY-3C (a/d)
Tab.2  ESA CCI SM 产品验证时间分段及其包括的传感器罗列
Fig.8  主动产品、被动产品和融合产品月土壤湿度在不同时间段不同研究区域的误差分解
Fig.9  融合产品月土壤湿度校正前后不同区域的误差分解
Fig.10  主动产品(A)、被动产品(P)、融合产品(C)和校正后的融合产品(CA)的月土壤湿度在不同数值范围的相对偏差分布
[1] Dirmeyer P A. Using a global soil wetness dataset to improve seasonal climate simulation[J]. Journal of Climate, 2000, 13(16):2900-2922.
[2] Koster R D, Dirmeyer P A, Guo Z, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305(5687):1138-1140.
pmid: 15326351
[3] McColl K A, Wang W, Peng B, et al. Global characterization of surface soil moisture drydowns[J]. Geophysical Research Letters, 2017, 44(8):3682-3690.
[4] 郭维栋, 马柱国, 王会军. 土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J]. 气候与环境研究, 2007, 12(1):20-28.
Guo W D, Ma Z G, Wang H J. Soil moisture—An important factor of seasonal precipitation prediction and its application[J]. Climatic and Environmental Research, 2007, 12(1):20-28.
[5] Komma J, Blöschl G, Reszler C. Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting[J]. Journal of Hydrology, 2008, 357(3-4):228-242.
[6] Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews, 2010, 99(3-4):125-161.
[7] 张文君, 周天军, 智海. 土壤湿度影响中国夏季气候的数值试验[J]. 气象学报, 2012, 70(1):78-90.
Zhang W J, Zhou T J, Zhi H. A numerical experiment on the effect of soil moisture to summer climate over China[J]. Acta Meteorologica Sinica, 2012, 70(1):78-90.
[8] Dorigo W A, Wagner W, Hohensinn R, et al. The international soil moisture network:A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5):1675-1698.
[9] Dorigo W, Himmelbauer I, Aberer D, et al. The international soil moisture network:Serving earth system science for over a decade[J]. Hydrology and Earth System Sciences, 2021, 25(11):5749-5804.
[10] Lawrence D M, Oleson K W, Flanner M G, et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 2011, 3:M03001.
[11] Xue Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies[J]. Journal of Climate, 1991, 4(3):345-364.
[12] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3):437-472.
[13] 师春香, 谢正辉, 钱辉, 等. 基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J]. 中国科学:地球科学, 2011, 41(3):375-385.
Shi C X, Xie Z H, Qian H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. Scientia Sinica Terrae, 2011, 41(3):375-385.
[14] Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11):1631-1643.
[15] Mitchell K E, Lohmann D, Houser P R, et al. The multi-institution North American Land Data Assimilation System (NLDAS):Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J]. Journal of Geophysical Research:Atmospheres, 2004, 109:D07S90.
[16] Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3):381-394.
[17] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597.
[18] Xia Y, Mitchell K, Ek M, et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System Project phase 2 (NLDAS-2):2.Validation of model-simulated streamflow[J]. Journal of Geophysical Research:Atmospheres, 2012, 117:D03109.
[19] 陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11):1192-1203.
doi: 10.11867/j.issn.1001-8166.2012.11.1192
Chen S L, Liu Y B, Wen Z M. Satellite retrieval of soil moisture:An overview[J]. Advances in Earth Science, 2012, 27(11):1192-1203.
[20] Liu W, Wang J, Xu F, et al. Validation of four satellite-derived soil moisture products using ground-based in situ observations over northern China[J]. Remote Sensing, 2022, 14(6):1419.
[21] 王逸男, 安如, 尤加俊, 等. CCI土壤湿度产品在中国区的降尺度与融合研究[J]. 河海大学学报(自然科学版), 2018, 46(3):196-202.
Wang Y N, An R, You J J, et al. Downscaling and merging of the CCI soil moisture product over China[J]. Journal of Hohai University (Natural Sciences), 2018, 46(3):196-202.
[22] 姚晓磊, 鱼京善, 李占杰, 等. CCI遥感土壤水在东北粮食主产区表征干旱的准确性评估[J]. 北京师范大学学报(自然科学版), 2019, 55(2):233-239.
Yao X L, Yu J S, Li Z J, et al. Accuracy evaluation of the ESA CCI remote sensing soil moisture for revealing drought in Northeast China[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(2):233-239.
[23] 李昂, 陆其峰, 杨晓峰, 等. AMSR-E卫星反演土壤湿度与ECWMF、NECP再分析土壤湿度比较分析[J]. 遥感技术与应用, 2013, 28(4):666-673.
doi: 10.11873/j.issn.1004-0323.2013.4.666
Li A, Lu Q F, Yang X F, et al. AMSR-E soil moisture compared with ECWMF and NECP soil moisture[J]. Remote Sensing Technology and Application, 2013, 28(4):666-673.
[24] 李明星, 马柱国, 牛国跃. 中国区域土壤湿度变化的时空特征模拟研究[J]. 科学通报, 2011, 56(16):1288-1300.
Li M X, Ma Z G, Niu G Y. Modeling spatial and temporal variations in soil moisture in China[J]. Chinese Science Bulletin, 2011, 56(16):1288-1300.
[25] Ling X, Huang Y, Guo W, et al. Comprehensive evaluation of sate-llite-based and reanalysis soil moisture products using in situ observations over China[J]. Hydrology and Earth System Sciences, 2021, 25(7):4209-4229.
[26] 刘丽伟, 魏栋, 王小巍, 等. 多种土壤湿度资料在中国地区的对比分析[J]. 干旱气象, 2019, 37(1):40-47.
Liu L W, Wei D, Wang X W, et al. Multi-data intercomparison of soil moisture over China[J]. Journal of Arid Meteorology, 2019, 37(1):40-47.
[27] 朱智, 师春香, 张涛, 等. 四套再分析土壤湿度资料在中国区域的适用性分析[J]. 高原气象, 2018, 37(1):240-252.
doi: 10.7522/j.issn.1000-0534.2017.00033
Zhu Z, Shi C X, Zhang T, et al. Applicability analysis of four soil moisture reanalysis datasets in China[J]. Plateau Meteorology, 2018, 37(1):240-252.
doi: 10.7522/j.issn.1000-0534.2017.00033
[28] Albergel C, de Rosnay P, Gruhier C, et al. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations[J]. Remote Sensing of Environment, 2012, 118:215-226.
[29] Chen Y Y, Yang K, Qin J, et al. Evaluation of SMAP,SMOS,and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(11):5780-5792.
[30] An R, Zhang L, Wang Z, et al. Validation of the ESA CCI soil moisture product in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 48:28-36.
[31] González-Zamora Á, Sánchez N, Pablos M, et al. CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain[J]. Remote Sensing of Environment, 2019, 225:469-482.
[32] Dorigo W, Wagner W, Albergel C, et al. ESA CCI Soil Moisture for improved earth system understanding:State-of-the art and future directions[J]. Remote Sensing of Environment, 2017, 203:185-215.
[33] Gruber A, Scanlon T, van der Schalie R, et al. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology[J]. Earth System Science Data, 2019, 11(2):717-739.
[34] Friedl M, Sulla-Menashe D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006 [Data set].NASA EOSDIS Land Processes Distributed Active Archive Center.Accessed 2023-01-19 from https://doi.org/10.5067/MODIS/MCD12C1.006.
[35] Gupta H V, Kling H, Yilmaz K K, et al. Decomposition of the mean squared error and NSE performance criteria:Implications for improving hydrological modelling[J]. Journal of Hydrology, 2009, 377(1/2):80-91.
[36] Dorigo W A, Scipal K, Parinussa R M, et al. Error characterisation of global active and passive microwave soil moisture datasets[J]. Hydrology and Earth System Sciences, 2010, 14(12):2605-2616.
[37] Conrad V, Pollak L W. Methods in climatology[J]. Quarterly Journal of the Royal Meteorology Society, 1951, 77(332):328-330.
[38] Peterson T C, Easterling D R, Karl T R, et al. Homogeneity adjustments of in situ atmospheric climate data:A review[J]. International Journal of Climatology, 1998, 18(13):1493-1517.
[39] Preimesberger W, Scanlon T, Su C H, et al. Homogenization of structural breaks in the global ESA CCI soil moisture multisatellite climate data record[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4):2845-2862.
doi: 10.1109/TGRS.2020.3012896
[40] Earth Observation Data Center for Water Resources Monitoring EODC GmbH, TU Wien, VanderSat, CESBIO and ETH Zürich. ESA Climate Change Initiative Plus-Soil Moisture,Algorithm Theoretical Baseline Document (ATBD) Supporting Product Version 07.1,D2.1 Version 3[Z]. 2022:14-15.
[41] Ulaby F T, Long D G, Blackwell W J, et al. Microwave radar and radiometric remote sensing[M]. University of Michigan Press, 2014:569-570.
[42] Albergel C, Rüdiger C, Pellarin T, et al. From near-surface to root-zone soil moisture using an exponential filter:An assessment of the method based on in situ observations and model simulations[J]. Hydrology and Earth System Sciences, 2008, 12(6):1323-1337.
[1] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[2] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[3] 陈艳, 袁晶, 唐春花, 孙超, 唐枭, 汪明有. 武功山隆起区地热资源预测遥感方法研究[J]. 自然资源遥感, 2024, 36(2): 27-38.
[4] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
[5] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[6] 李恺霖, 廖廓, 党皓飞. 内陆与近岸水体的色度学遥感研究进展[J]. 自然资源遥感, 2023, 35(1): 15-26.
[7] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[8] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[9] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[10] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[11] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[12] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[13] 王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
[14] 古海玲, 陈超, 芦莹, 褚衍丽. 基于卫星遥感技术的区域经济发展模型构建[J]. 国土资源遥感, 2020, 32(2): 226-232.
[15] 吴迪, 陈健, 石满, 覃帮勇, 李盛阳. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019, 31(2): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发