Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 235-241    DOI: 10.6046/zrzyyg.2022435
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
丘陵地带耕地撂荒遥感监测应用研究
周小迦1,2()
1.辽宁工程技术大学测绘与地理科学学院,阜新 123000
2.辽宁省测绘产品质量监督检验站,沈阳 110034
Application of remote sensing monitoring in abandoned arable land in a hilly region
ZHOU Xiaojia1,2()
1. School of Geomatics,Liaoning Technical University, Fuxin 123000, China
2. Liaoning Provincial Surveying and Mapping Product Quality Supervision and Inspection Station,Shenyang 110034, China
全文: PDF(7691 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

精准掌握耕地撂荒分布情况对于耕地保护和粮食安全尤为重要。为此,该文以南方丘陵区地带粮食主产区湖南省宁远县作为研究区域,依据该地水稻种植物候特征,以2020年和2021年获取的6期卫星遥感影像和航空影像作为数据源,以第三次全国国土调查水田和1∶2 000 DLG田埂范围作为最小提取单元,基于时序归一化植被指数(normalized difference vegetation index,NDVI)分析和改进支持向量机(support vector machine,SVM)方法,提取水稻种植图斑; 通过连续2 a差值计算,筛选出疑似撂荒区域,结合无人机抽样航空调查,对疑似区域进行精细化筛查,分析得到耕地撂荒区域,经过现场核查监测精度可达85%以上。结果表明,融合空、天、地一体化的遥感监测方法可以为农业管理部门的耕地撂荒现象治理工作提供科学有效的数据支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周小迦
关键词 卫星遥感耕地撂荒耕地保护遥感监测    
Abstract

With continuously accelerated urbanization, urban expansion-induced farmland occupation and rural hollowing have gradually aggravated arable land abandonment, posing challenges to China’s food security. Hence, accurately determining the distribution of abandoned arable land is critical to arable land protection and food security. This study investigated a county in the major crop production area in a hilly region in southern China. Based on the phenological characteristics of local rice planting, this study adopted six phases of satellite remote sensing images and aerial images acquired in 2020 and 2021 were used as the data source and selected paddy fields determined based on the Third National Land Survey and field ridges in 1∶2 000 digital line graphics (DLGs) as the minimum information extraction unit. Then, the rice planting patches were extracted through time-series normalized difference vegetation index (NDVI) analysis and the improved SVM method. Suspected abandoned areas were screened out through the difference calculation for two consecutive years and then further identified in the unmanned aerial vehicle (UAV)-based sampling aerial survey. Consequently, the abandoned arable land areas were determined, with monitoring accuracy exceeding 85%, as revealed by on-site verification. The results of this study show that the space-air-ground integrated remote sensing monitoring method can provide scientific and effective data support for agricultural management departments to control and manage cultivated land abandonment.

Key wordssatellite remote sensing    arable land abandonment    arable land protection    remote sensing monitoring
收稿日期: 2022-11-17      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:辽宁省教育厅基础研究项目“复杂道路环境下多传感器协同获取分析方法研究”(LJ2020JCL016)
作者简介: 周小迦(1988-),男,硕士研究生,高级工程师,研究方向为测绘产品质检、专题地理信息系统、遥感目标识别。Email: zxj110041@163.com
引用本文:   
周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
ZHOU Xiaojia. Application of remote sensing monitoring in abandoned arable land in a hilly region. Remote Sensing for Natural Resources, 2024, 36(1): 235-241.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022435      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/235
Fig.1  研究区位置
卫星型号及数据类型 2020年 2021年
4月 8月 10月 4月 8月 10月
GF-1 4 2 6 3 1 5
JLKF01A 2 4 5 4 4 2
JLKF01C 6 1 3 7 3 2
Superview-01 3 2 4 2 6 3
合计 15 9 18 16 14 12
Tab.1  Satellite images of research area from 2020 to 2021 (景)
Fig.2  耕地撂荒监测技术路线
Fig.3  一季稻和双季稻NDVI曲线
Fig.4  撂荒地分布
年份 Kappa 总体分类精度/%
2020年 0.846 88.31
2021年 0.856 89.42
Tab.2  Kappa系数和总体分类精度
Fig.5  撂荒空间分布及局部区域放大
坡度级别 坡度范围/(°) 撂荒面积/km2 占比/%
1 [0,2) 0.23 4.13
2 [2,6) 0.41 7.31
3 [6,15) 1.66 29.62
4 [15,25) 2.41 43.01
5 [25,90) 0.89 15.89
Tab.3  五级坡度级别下撂荒面积
[1] 王新友, 王玉娇. 耕地撂荒的文献计量分析:脉络和展望[J]. 干旱区地理, 2023, 46(5):804-813.
Wang X Y, Wang Y J. Bibliometric analysis of cultivated land abandonment:Context and prospect[J]. Arid Land Geography, 2023, 46(5):804-813.
[2] 李升发, 李秀彬. 耕地撂荒研究进展与展望[J]. 地理学报, 2016, 71(3):370-389.
doi: 10.11821/dlxb201603002
Li S F, Li X B. Progress and prospect on farmland abandonment[J]. Acta Geographica Sinica, 2016, 71(3):370-389.
doi: 10.11821/dlxb201603002
[3] 马清欣, 何三林. 对当前农村耕地撂荒和耕地质量下降问题的探讨[J]. 中国农业资源与区划, 2002, 23(4):19-21.
Ma Q X, He S L. To probe into the problems of arable land wasting and its quality declining in rural areas at present[J]. Journal of China Agricultural Resources and Regional Planning, 2002, 23(4):19-21.
[4] Estel S, Kuemerle T, Alcántara C, et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series[J]. Remote Sensing of Environment, 2015, 163:312-325.
doi: 10.1016/j.rse.2015.03.028
[5] Xu Z, Mi W B, Mi N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities.[J]. Environmental Science and Pollution Research, 2020, 27(31):38835-38848.
doi: 10.1007/s11356-020-09877-9
[6] Sayfullina L B, Azizov Z M, Imashev I G, et al. Soil nitrification capacity as an integral indicator of soil fertility monitoring[J]. Russian Agricultural Sciences, 2022, 48(4) :290-295.
doi: 10.3103/S1068367422040127
[7] 张昊, 高小红, 史飞飞, 等. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4):144-154.doi:10.6046/gtzyyg.2021385.
Zhang H, Gao X H, Shi F F, et al. based on the combination of Sentinel-2 MSI and Sentinel-1 SAR based extraction of abandoned land in the western the Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4):144-154.doi:10.6046/gtzyyg.2021385.
[8] 王玲玉, 陈全, 吴跃, 等. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3):23-31.doi:10.6046/gtzyyg.2020.03.04.
Wang L Y, Chen Q, Wu Y, et al. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land and Resources, 2020, 32 (3):23-31.doi:10.6046/gtzyyg.2020.03.04.
[9] 丁书培, 李蒙蒙, 汪小钦, 等. 基于时序遥感数据的福州市耕地非农化特征及驱动因子分析[J]. 遥感技术与应用, 2022, 37(3):550-563.
Ding S P, Li M M, Wang X Q, et al. The use of time series remote sensing data to analyze the characteristics of non-agriculture farmland and their driving factors in Fuzhou[J]. Remote Sensing Technology and Application, 2022, 37 (3):550-563.
[10] 牟昱璇, 邬明权, 牛铮, 等. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5):1127-1135.
Mu Y X, Wu M Q, Niu Z, et al. Method of remote sensing extraction of cultivated land area under complex conditions in southern region[J]. Remote Sensing Technology and Application, 2020, 35 (5):1127-1135.
[11] 张天柱, 张凤荣, 黄敬文, 等. 工业化区域撂荒耕地空间格局演变及影响因素分析[J]. 农业工程学报, 2019, 35(15):246-255.
Zhang T Z, Zhang F R, Huang J W, et al. Spatial pattern evolution of abandoned arable land and its influencing factor in industrialized region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (15):246-255.
[12] 滕晓波, 欧阳文一, 雷博. 农民占耕地建房的成因及对策分析——以宁远县柏家坪镇四元山村为例[J]. 国土资源导刊, 2022, 19(1):72-75.
Teng X B, Ouyang W Y, Lei B. Analysis on causes and countermeasures of farmers occupying cultivated land to build houses:Taking Siyuanshan Village,Baijiaping Town,Ningyuan County as an example[J]. Land and Resources Herald, 2022, 19 (1):72-75.
[13] 蔡琼, 朱红梅, 肖婷. 耕地质量与耕地产能耦合度研究—以湖南宁远县为例[J]. 上海国土资源, 2022, 43(2):66-72.
Cai Q, Zhu H M, Xiao T. On coupling degree of cultivated land quality and productivity:A case study of Ningyuan County,Hunan Province as an example[J]. Shanghai Land and Resources, 2022, 43(2):66-72.
[14] 李升发, 李秀彬, 辛良杰, 等. 中国山区耕地撂荒程度及空间分布——基于全国山区抽样调查结果[J]. 资源科学, 2017, 39(10):1801-1811.
doi: 10.18402/resci.2017.10.01
Li S F, Li X B, Xin L J, et al. Extent and distribution of cropland abandonment in Chinese mountainous areas[J]. Resource Science, 2017, 39 (10):1801-1811.
[15] 牛继强, 林昊, 牛樱楠, 等. 经济欠发达地区撂荒耕地空间格局与驱动因素分析[J]. 农业机械学报, 2017, 48(2):141-149.
Niu J Q, Lin H, Niu Y N, et al. Analysis of spatial pattern and driving factors for abandoned arable lands in underdevelopment region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):141-149.
[16] 邓刚, 唐志光, 李朝奎, 等. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2):177-185.doi:10.6046/gtzyyg.2020.02.23.
Deng G, Tang Z G, Li C K, et al. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing of Land and Resources, 2020, 32 (2):177-185.doi:10.6046/gtzyyg.2020.02.23.
[17] 柳文杰, 曾永年, 张猛. 融合时间序列环境卫星数据与物候特征的水稻种植区提取[J]. 遥感学报, 2018, 22(3):381-391.
Liu W J, Zeng Y N, Zhang M. Mapping rice paddy distribution by using time series HJ blend data and phenological parameters[J]. Journal of Remote Sensing, 2018, 22 (3):381-391.
[18] 马尚杰, 裴志远, 王飞, 等. 基于GF-1影像的沿淮地区冬季耕地撂荒遥感调查应用[J]. 农业工程学报, 2019, 35(1):227-233.
Ma S J, Pei Z Y, Wang F, et al. Application on remote sensing survey of abandoned farmlands in winter along the Huaihe River based on GF-1 image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1):227-233.
[19] 肖国峰, 朱秀芳, 侯陈瑶, 等. 撂荒耕地的提取与分析——以山东省庆云县和无棣县为例[J]. 地理学报, 2018, 73(9):1658-1673.
doi: 10.11821/dlxb201809004
Xiao G F, Zhu X F, Hou C Y, et al. Extraction and analysis of abandoned farmland:A case study of Qingyun and Wudi Counties in Shandong Province as examples[J]. Acta Geographica Sinica, 2018, 73(9):1658-1673.
[20] 韦中晖, 靳海亮, 顾晓鹤, 等. 基于多时相协同变化检测的耕地撂荒遥感监测[J]. 遥感技术与应用, 2022, 37(3):539-549.
Wei Z H, Jin H L, Gu X H, et al. Remote sensing monitoring of cultivated land abandonment based on multi temporal collaborative change detection[J]. Remote Sensing Technology and Application, 2022, 37(3):539-549.
[21] 李赞红, 阎建忠, 花晓波, 等. 不同类型农户撂荒及其影响因素研究——以重庆市12个典型村为例[J]. 地理研究, 2014, 33(4):721-734.
doi: 10.11821/dlyj201404012
Li Z H, Yan J Z, Hua X B, et al. Factors influencing the culivated land abandonment of households of different types:A case study of 12 typical villages in Chongqing Municipality[J]. Geographical Research, 2014, 33 (4):721-734.
[22] 郑财贵, 邱道持, 叶公强, 等. 基于GIS空间分析的撂荒地空间分布特征研究——以重庆市璧山县大路镇为例[J]. 农机化研究, 2010, 32(3):31-36.
Zheng C G, Qiu D C, Ye G Q, et al. Study on spatial distribution characteristics of abandoned cropland based on spatial analysis of GIS:A case of Dalu Town Bishan County in Chongqing Municipality[J]. Journal of Agricultural Mechanization Research, 2010, 32(3):31-36.
[1] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[2] 李恺霖, 廖廓, 党皓飞. 内陆与近岸水体的色度学遥感研究进展[J]. 自然资源遥感, 2023, 35(1): 15-26.
[3] 王娟, 王志红, 张建国, 初娜, 李斯, 尹展. 河南省国家级自然保护区人类活动遥感监测及其影响强度评价[J]. 自然资源遥感, 2022, 34(4): 235-242.
[4] 辛荣芳, 李宗仁, 张焜, 张兴, 黄丽, 刘宝山. 青海省湟水流域地质灾害动态变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 254-261.
[5] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[6] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[7] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[8] 查东平, 蔡海生, 张学玲, 何庆港. 基于多时相Sentinel-1水稻种植范围提取[J]. 自然资源遥感, 2022, 34(3): 184-195.
[9] 佟晶, 杨金中, 杜鑫, 杜晓敏, 李春博, 安娜. 污染地块土地治理与开发利用遥感监测——以浙江省风险管控与修复名录地块为例[J]. 自然资源遥感, 2022, 34(3): 235-239.
[10] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[11] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[12] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[13] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[14] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[15] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2): 262-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发