Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 227-234    DOI: 10.6046/zrzyyg.2020404
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于GEE的三峡蓄水对重庆地表水和植被影响研究
赖佩玉(), 黄静, 韩旭军(), 马明国
西南大学地理科学学院,重庆金佛山喀斯特生态系统国家野外科学观测研究站,重庆 400715
An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine
LAI Peiyu(), HUANG Jing, HAN Xujun(), MA Mingguo
Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
全文: PDF(3854 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

研究三峡工程对周边生态环境的影响对维护生态安全具有重要意义。目前,相关研究已经揭示了三峡大坝的建设与蓄水在气象、植被、土地利用以及灾害发生等方面的影响,而地表水作为地球水资源的重要组成部分,受三峡工程的影响程度还不清楚,尤其是在长江上游。本研究利用多源数据在GEE(Google Earth Engine)平台上分析了重庆地区1990—2019年间常年地表水、植被以及气象要素在三峡蓄水前期(1990—2002年)、中期(2003—2012年)和后期(2013—2019年)3个阶段的时空变化情况。结果表明: ①地表水和植被在1990—2019年都表现出增长的趋势,且其不同的增长模式都表现出对三峡蓄水明显的响应,而温度和降雨表现出持续的波动,对蓄水过程无明显响应; ②常年地表水面积在蓄水过程中以18.32 km2/a的速度增加,而在蓄水前后变化不大,新增的常年地表水主要分布在长江及其支流沿岸,且集中在长江重庆段的中部,少数的地表水面积增加出现在湖泊和水库,如长寿湖在蓄水期间增加了超过其面积20%的水域; ③归一化植被指数在3个阶段表现为台阶式增长(共增长18.55%),这一变化为地表水资源增加和生态修复工程的共同作用。本研究表明三峡蓄水对重庆地区水资源的时空动态有着较为显著的影响,同时发现了水利工程改变地表覆盖及水资源分布的有效证据,这为重庆地区乃至整个长江流域的水资源管理提供了科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赖佩玉
黄静
韩旭军
马明国
关键词 三峡蓄水常年地表水Google Earth Engine长时间序列数据多源数据    
Abstract

It is significant for maintaining ecological security to study the impacts of the Three Gorges Dam Project on the surrounding ecological environment. At present, massive studies have revealed the impacts from the construction and water impoundment of the Three Gorges Dam on meteorology, vegetation, land use, and the occurrence of disasters. However, the impacts of the project on surface water-an important part of the Earth’s water resources-are still unclear, especially in the upper reaches of the Yangtze River. Based on multi-source data and the Google Earth Engine platform, this study analyzes the changes in permanent surface water, vegetation, and meteorological factors in the Chongqing area before (1990—2002), during (2003—2012) and after (2013—2019) the water impoundment of Three Gorges Dam Project. The results show: ① Both surface water and vegetation in the study area showed an increasing trend during 1990—2019 with different growth patterns and notably response to the water impoundment. In contrast, the temperature and precipitation continuously fluctuated but did not significantly respond to the water impoundment process during that period. ② The area of the permanent surface water in the study area increased at an annual rate of 18.32 km2 during the water impoundment but did not greatly change before and after the water impoundment. The newly added permanent surface water was mainly distributed along the Yangtze River and its tributaries, especially in the middle part of the Chongqing section of the Yangtze River. Besides, a minority of it was distributed in some lakes and reservoirs. For example, the area of the Changshou lake increased by more than 20% during the water impoundment. ③ The normalized difference vegetation index (NDVI) increased by 18.55% in a stepwise way before, during, and after the water impoundment, which is attributable to joint effects of the increase in surface water and the restoration projects of degraded ecosystem. This study indicates that the water impoundment of the Three Gorges Dam Project has notable impacts on the spatial-temporal dynamics of the water resources in the Chongqing area. Meanwhile, it reveals effective evidence that the water conservancy projects can change the coverage and water resource distribution on the ground surface. All these will provide scientific basis for water resource management in the Chongqing area and even the whole Yangtze River Basin.

Key wordswater impoundment of Three Gorges Dam Project    permanent surface water    Google Earth Engine    Long time series data    multi-source data
收稿日期: 2020-12-16      出版日期: 2021-12-23
ZTFLH:  TP79X87  
基金资助:重庆市研究生科研创新项目“重庆市地表水变化及其在干旱中的应用研究”(CYS20107)
通讯作者: 韩旭军
作者简介: 赖佩玉(1996-),女,硕士研究生,主要研究方向为环境遥感。Email: peiyul@email.swu.edu.cn
引用本文:   
赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020404      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/227
Fig.1  重庆地表覆盖(2015年欧洲航天局CCI土地覆盖数据)及三峡库区位置示意图
要素 数据来源 空间分辨率 时间分
辨率
数据发布者
常年地表水 高分辨率全球地表水时间序列数据集V2[20] 30 m 1 a 欧盟联合研究中心
归一化植被指数 先进型高分辨率辐射计(AVHRR)NDVI数据集[21] 0.05° 1 d NASA戈达德太空飞行中心和马里兰大学
降雨 中国地面气候资料日值数据集V3[22] 12个气象站 1 d 国家气象信息中心
气温 中国地面气候资料日值数据集V3 12个气象站 1 d 国家气象信息中心
Tab.1  本研究用到的数据集及其属性
Fig.2  重庆市1990—2019年PWA时间序列
Fig.3  1990—2019年PWA的Mann-Kendall检验结果
Fig.4  2002年重庆市地表水状态转换情况
Fig.5  重庆市2002—2013年新增常年地表水的空间分布
Fig.6  重庆市1990—2019年NDVI时间序列
Fig.7  重庆市1999—2019年NDVI空间变化分布
Fig.8  重庆市NDVI与PWA的相关关系
Fig.9  重庆市1990—2019气温时间序列
Fig.10  重庆市1990—2019年降雨量时间序列
[1] 何军, 张伟, 李家明, 等. 三峡工程建成蓄水对库区参考作物蒸发蒸腾量的影响研究[J]. 中国农村水利水电, 2020(8):122-125.
He J, Zhang W, Li J M, et al. Research on the influence of Three Gorges Project construction on reference crop evapotranspiration ET0 in reservoir areas[J]. China Rural Water and Hydropower, 2020(8):122-125.
[2] 陈鲜艳, 张强, 叶殿秀, 等. 三峡库区局地气候变化[J]. 长江流域资源与环境, 2009,18(1):47-51.
Chen X Y, Zhang Q, Ye D X, et al. Regional climate change over Three Gorges Reservoir area[J]. Resources and Environment in the Yangtze Basin, 2009,18(1):47-51.
[3] 王圆圆, 李贵才, 郭徵, 等. 1979年—2014年三峡库区月平均气温的时空变化分析[J]. 遥感学报, 2018,22(3):487-496.
Wang Y Y, Li G C, Guo H, et al. Spatial-temporal analysis of monthly air temperature changes from 1979—2014 in the Three Gorges Dam region[J]. Journal of Remote Sensing, 2018,22(3):487-496.
[4] 李博, 唐世浩. 基于TRMM卫星资料分析三峡蓄水前后的局地降水变化[J]. 长江流域资源与环境, 2014,23(5):617-625.
Li B, Tang S H. Local precipitation changes induced by the Three Gorges Reservoir based on TRMM observations[J]. Resources and Environment in the Yangtze Basin, 2014,23(5):617-625.
[5] 陈鲜艳, 宋连春, 郭占峰, 等. 长江三峡库区和上游气候变化特点及其影响[J]. 长江流域资源与环境, 2013,22(11):1466-1471.
Chen X Y, Song L C, Guo Z F, et al. Climate change over the Three Gorge Reservoir and upper Yangtze with its possible effect[J]. Resources and Environment in the Yangtze Basin, 2013,22(11):1466-1471.
[6] 邹旭恺, 张强, 叶殿秀. 长江三峡库区连阴雨的气候特征分析[J]. 灾害学, 2005,20(1):84-89.
Zou X K, Zhang Q, Ye D X. An analysis on the climatic characteristics of consecutive rainfall in the Three Gorges area[J]. Journal of Catastrophology, 2005,20(1):84-89.
[7] 李建国, 濮励杰, 刘金萍, 等. 2001年至2010年三峡库区重庆段植被活动时空特征及其影响因素[J]. 资源科学, 2012,34(8):1500-1507.
Li J G, Pu L J, Liu J P, et al. The temporal and spatial characteristics of vegetation activity in Three Gorges Reservoir area (Chongqing) from 2001 to 2010 and its influencing factors[J]. Resources Science, 2012,34(8):1500-1507.
[8] 马骏, 马朋, 李昌晓, 等. 2000—2011年三峡库区重庆段植被覆盖景观格局变化[J]. 西南大学学报(自然科学版), 2014,36(12):141-147.
Ma J, Ma P, Li C X, et al. Changes in landscape patterns of vegetation coverage in chongqing section of the Three Gorges Reservoir region from 2000 to 2011[J]. Journal of Southwest University (Natural Science Edition), 2014,36(12):141-147.
[9] 张兰, 沈敬伟, 刘晓璐, 等. 2001—2016年三峡库区植被变化及其气候驱动因子分析[J]. 地理与地理信息科学, 2019,35(2):38-46.
Zhang L, Shen J W, Liu X L, et al. Vegetation changes in the Three Gorges Reservoir area from 2001 to 2016 and the analysis of its climate driving factors[J]. Geography and Geo-Information Science, 2019,35(2):38-46.
[10] 钟海玲, 高荣, 杨霞. 三峡库区蓄水后气候特征及其对生产潜力的影响[J]. 安徽农业科学, 2010,38(12):6353-6355.
Zhong H L, Gao R, Yang X. Climate characteristics in Three Gorges Reservoir area after water storage and its impact on the production potential[J]. Meteorological and Environmental Research, 2010,38(12):6353-6355.
[11] 曹银贵, 王静, 刘正军, 等. 三峡库区近30年土地利用时空变化特征分析[J]. 测绘科学, 2007,32(6):167-170.
Cao Y G, Wang J, Liu Z J, et al. Analyses on temporal-spatial traits of land use in three gorges during 30 years[J]. Science of Surveying and Mapping, 2007,32(6):167-170.
[12] 滕明君, 曾立雄, 肖文发, 等. 长江三峡库区生态环境变化遥感研究进展[J]. 应用生态学报, 2014,25(12):3683-3693.
Teng M J, Zeng L X, Xiao W F, et al. Research progress on remote sensing of ecological and environmental changes in the Three Gorges Reservoir area,China[J]. Chinese Journal of Applied Ecology, 2014,25(12):3683-3693.
[13] 张磊, 董立新, 吴炳方, 等. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007,16(1):107-112.
Zhang L, Dong L X, Wu B F, et al. Land cover change before and after the construction of three gorges reservoir within 10 years[J]. Resources and Environment in the Yangtze Basin, 2007,16(1):107-112.
[14] 郝斌飞, 杨洪, 马明国, 等. 基于Google Earth Engine的三峡库区土地利用与陆表参数变化研究[J]. 长江流域资源与环境, 2020,29(6):1343-1355.
Hao B F, Yang H, Ma M G, et al. Variation in land use and land surface parameters in the Three Gorges Reservoir catchment based on Google Earth Engine[J]. Resources and Environment in the Yangtze Basin, 2020,29(6):1343-1355.
[15] 李强, 李永华, 王中, 等. 近30年三峡库区洪涝特征及建库前后致涝气候因子的差异[J]. 热带气象学报, 2010,26(6):750-758.
Li Q, Li Y H, Wang Z, et al. The flood features of the three gorges reservoir region for the past 30 years and the difference of flood-causing climatic factors before and after the construction of the reservoir[J]. Journal of Tropical Meteorology, 2010,26(6):750-758.
[16] 范建容, 刘飞, 郭芬芬, 等. 基于遥感技术的三峡库区土壤侵蚀量评估及影响因子分析[J]. 山地学报, 2011,29(3):306-311.
Fan J R, Liu F, Guo F F, et al. Soil erosion assessment and cause analysis in Three Gorges Reservoir area based on remote sensing[J]. Mountain Research, 2011,29(3):306-311.
[17] 贺秋华, 余德清, 余姝辰, 等. 三峡水库运行前后洞庭湖水资源量变化[J]. 地球科学, 2021,46(1):293-307.
He Q H, Yu D Q, Yu S C, et al. Changes of water resources amount in Dongting Lake before and after the operation of the Three Gorges Reservoir[J]. Earth Science, 2021,46(1):293-307.
[18] 黄维, 王为东. 三峡工程运行后对洞庭湖湿地的影响[J]. 生态学报, 2016,36(20):6345-6352.
Huang W, Wang W D. Effects of Three Gorges Dam Project on Dongting Lake wetlands[J]. Acta Ecologica Sinica, 2016,36(20):6345-6352.
[19] 黄浩, 黄雷, 鲁朝林. 三峡工程对下游地下水动态的影响[J]. 科学技术创新, 2020(8):143-145.
Huang H, Huang L, Lu C L. The influence of the Three Gorges Dam Project on the groundwater dynamics in downstream area[J]. Scientific and Technological Innovation, 2020(8):143-145.
[20] Pekel J-F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016,540(7633):418-422.
doi: 10.1038/nature20584
[21] Vermote C, Csiszar I, Eidenshink J, et al. NOAA climate data record (CDR) of normalized difference vegetation index (NDVI),Version 4[DB]. 2014.
[22] 中国气象局气象数据中心. 中国地面气候资料日值数据集[DB]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html.
Meteorological Data Center of China Meteorological Administration .Dataset of daily surface climatological data in China[DB]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html.
[23] Douglas E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States:Impact of spatial correlation[J]. Journal of Hydrology, 2000,240(1-2):90-105.
doi: 10.1016/S0022-1694(00)00336-X
[24] Guo M, Li J, He H, et al. Detecting global vegetation changes using Mann-Kendal(MK) trend test for 1982—2015 time period[J]. Chinese Geographical Science, 2018,28(6):907-919.
doi: 10.1007/s11769-018-1002-2
[25] Aghakouchak A, Farahmand A, Melton F S, et al. Remote sensing of drought:Progress,challenges and opportunities[J]. Reviews of Geophysics, 2015,53(2):452-480.
doi: 10.1002/2014RG000456
[26] 王翔. “退”出一片绿水青山——写在重庆实施退耕还林20周年之际[EB/OL]. 重庆日报,(2019-08-21)[2021-04-26]. https://epaper.cqrb.cn/html/cqrb/2020-01/22/001/node.htm.
Wang X. “Retreat” out of the green mountains:Written on the 20th anniversary of Chongqing’s conversion of farmland to forests[EB/OL]. Journal of Chongqing,(2019-08-21)[2021-04-26]. https://epaper.cqrb.cn/html/cqrb/2020-01/22/001/node.htm.
[27] 吴昌广. 气候变化背景下三峡库区植被覆盖动态及其土壤侵蚀风险研究[D]. 武汉:华中农业大学, 2011.
Wu C G. Assement of vegetation cover dynamic and soil erpsoin risk in Three Gorges Reservoir area under the background of climate change[D]. Wuhan:Huazhong Agricultural University, 2011.
[1] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[2] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[3] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[4] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[5] 朱琦, 郭华东, 张露, 梁栋, 刘栩婷, 万祥星. 基于多时相Landsat8影像的海南岛热带天然林类型遥感分类[J]. 自然资源遥感, 2022, 34(2): 215-223.
[6] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[7] 方梦阳, 刘晓煌, 孔凡全, 李明哲, 裴小龙. 一种基于GEE平台制作逐年土地覆盖数据的方法——以黄河流域为例[J]. 自然资源遥感, 2022, 34(1): 135-141.
[8] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[9] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
[10] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[13] 牟晓莉, 李贺, 黄翀, 刘庆生, 刘高焕. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2): 1-10.
[14] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[15] 桑潇, 国巧真, 乔悦, 吴欢欢, 臧金龙. 基于多源数据的山西省长治市宜居性研究[J]. 国土资源遥感, 2020, 32(3): 200-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发