Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 8-14    DOI: 10.6046/zrzyyg.2023260
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于3D-CAE的高光谱解混及小样本分类方法
黄川1(), 李雅琴1, 祁越然2, 魏晓燕3, 邵远征4()
1.武汉轻工大学数学与计算机学院,武汉 430023
2.安徽师范大学地理与旅游学院,芜湖 241001
3.云南省测绘资料档案馆(云南省基础地理信息中心),昆明 650034
4.武汉大学地球空间信息技术协同创新中心,武汉 430079
A hyperspectral unmixing and few-shot classification method based on 3DCAE network
HUANG Chuan1(), LI Yaqin1, QI Yueran2, WEI Xiaoyan3, SHAO Yuanzheng4()
1. School of Mathematics and Computer Science, Wuhan Polytechnic University,Wuhan 430023,China
2. School of Geography and Tourism, Anhui Normal University,Wuhu 241001, China
3. Yunnan Provincial Archives of Surveying and Mapping (Yunnan Provincial Geomatics Centre), Kunming 650034, China
4. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
全文: PDF(3738 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

我国高光谱遥感技术的快速发展为开展大区域地物分类应用提供了充分保障。然而,如何在小样本下充分利用高光谱自身的空谱信息实现高精度的分类成为挑战。该文通过构建3D卷积自编码网络,以混合像元分解物理约束对模型进行引导,从而实现在准确估计端元丰度的同时获得对规则化的高光谱空谱特征的有效表达,结合支持向量机分类器实现在小样本条件下的高光谱分类。实验中,采用包括监督分类方法在内的多种传统高光谱图谱特征提取及分类方法进行对比验证,并对比了不同模型在不同采样率下的分类性能表现。实验结果表明,所提出的高光谱分类方法具有明显的精度优势,其中平均交并比(mean intersection over union,mIoU)达到0.829,相对于传统分类方法精度有明显提升; 在1/200采样率下mIoU值依然能接近0.8,优于同类方法,证实了该文方法在小样本条件下依然具有较好的鲁棒性,为解决小样本下高光谱分类问题提供了技术参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄川
李雅琴
祁越然
魏晓燕
邵远征
关键词 深度学习高光谱影像分类卷积神经网络解混    
Abstract

The rapid development of hyperspectral remote sensing technology in China fully ensures the effective application of large-scale surface feature classification. However, achieving high-precision classification under few-spot conditions while fully leveraging hyperspectral spatial-spectral information remains challenging. This study developed a 3D convolutional autoencoder (3D-CAE) network guided by physical constraints from mixed pixel decomposition. This approach enables accurate estimation of endmember abundance while effectively expressing regularized spatial-spectral features of hyperspectral data. In combination with a support vector machine (SVM) classifier, the method achieves hyperspectral classification under few-spot conditions. The classification performance of various models was evaluated at different sampling rates. To validate the proposed method, this study conducted experiments including comparisons with traditional hyperspectral feature extraction and classification methods, such as supervised classification approaches. The classification performance of various models was also evaluated at different sampling rates. The experimental results demonstrate that the proposed hyperspectral classification method has a significant advantage of accuracy, achieving a mean intersection over union (mIoU) of 0.829, which was close to 0.8 even at a low sampling rate of 1/200, surpassing its counterparts. These results confirm that the proposed method exhibits robustness under few-spot conditions. This study provides a valuable technical reference for addressing hyperspectral classification challenges under few-spot conditions.

Key wordsdeep learning    hyperspectral imagery    classification    convolutional neural network    unmixing
收稿日期: 2023-08-28      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“孟中缅印经济走廊公路网时空风险评估与归因”(42061074);与“基于深度学习的高光谱图像红肉品质检测理论与技术”(61906140)
通讯作者: 邵远征(1983-),男,博士,副研究员,主要从事地理信息研究研究与遥感行业化应用研究。Email: yshao@whu.edu.cn
作者简介: 黄 川(1973-),男,博士,副教授,主要从事基于深度学习的遥感数据处理与地理信息系统研究。Email: stephensky123@163.com
引用本文:   
黄川, 李雅琴, 祁越然, 魏晓燕, 邵远征. 基于3D-CAE的高光谱解混及小样本分类方法[J]. 自然资源遥感, 2025, 37(1): 8-14.
HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023260      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/8
Fig.1  高光谱图像及端元光谱
Fig.2  基于3D-CAE的高光谱分类流程
特征层 卷积核
大小
卷积核
数量/个
激活
函数
特征
尺寸
Conv3D-1 (1, 1, 7) 32 ReLU (1, 1, 155, 32)
Conv3D-2 (1, 1, 7) 16 ReLU (1, 1, 148, 16)
Conv3D-3 (1, 1, 7) 8 ReLU (1, 1, 141, 8)
Conv3D-4 (1, 1, 7) 2 ReLU (1, 1, 134, 2)
Flatten 134×2
Dense-1 32 ReLU 32
Dense-2 6 Softmax 6
Dense-3 162 ReLU 162
Tab.1  网络组成及相关参数设置
类型 沥青 草地 树木 屋顶 金属 土壤
预测丰度
真实值
RMSE
图例
Tab.2  模型预测不同端元的丰度值与真实值
Fig.3  不同模型预测分类结果与真值对比图
模型 总体分
类精度
精确度 召回率 F1得分 mIoU
3D-CAE-SVM 0.927 0.936 0.883 0.905 0.829
PCA-SVM 0.912 0.928 0.854 0.884 0.796
MNF-SVM 0.895 0.913 0.847 0.873 0.779
FCLS-SVM 0.850 0.832 0.775 0.778 0.657
SVM 0.916 0.929 0.856 0.885 0.799
SAM 0.847 0.870 0.831 0.821 0.777
SID 0.712 0.652 0.771 0.625 0.513
Tab.3  不同模型预测精度对比表
Fig.4  各个模型在不同采样率下分类精度变化趋势
[1] 杜培军, 谭琨, 夏俊士. 高光谱遥感影像分类与支持向量机应用研究[M]. Beijing: Science Press, 2012,1-160.
Du P J, Tan K, Xia J S, et al. Research on hyperspectral remote sensing image classification and support vector machine application[M]. Beijing: Science Press, 2012,1-160.
[2] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview:Geometrical,statistical,and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2):354-379.
[3] 刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报, 2020, 24(4):333-344.
Liu Y N, Sun D X, Hu X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing(Chinese), 2020, 24(4):333-344.
[4] Zhong Y, Wang X, Wang S, et al. Advances in spaceborne hyperspectral remote sensing in China[J]. Geo-Spatial Information Science, 2021, 24(1):95-120.
[5] Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.
[6] Black M, Riley T R, Ferrier G, et al. Automated lithological mapping using airborne hyperspectral thermal infrared data:A case study from Anchorage Island,Antarctica[J]. Remote Sensing of Environment, 2016,176:225-241.
[7] Alberti A, Alessandro V, Pieruccini U, et al. Landsat TM data processing for lithological discrimination in the Caraculo area (Namibe Province,SW Angola)[J]. Journal of African Earth Sciences (and the Middle East), 1993, 17(3):261-274.
[8] Hecker C, van der Meijde M, van der Werff H, et al. Assessing the influence of reference spectra on synthetic SAM classification results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4162-4172.
[9] Chang C I. An information-theoretic approach to spectral variability,similarity,and discrimination for hyperspectral image analysis[J]. IEEE Transactions on Information Theory, 2000, 46(5):1927-1932.
[10] Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362.
[11] Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing:A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
[12] Zhou H, Huang L, Wang Y. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12):1226004.
[13] Han M, Cong R, Li X, et al. Joint spatial-spectral hyperspectral image classification based on convolutional neural network[J]. Pattern Recognition Letters, 2020,130:38-45.
[14] Li C, Cai R, Yu J. An attention-based 3D convolutional autoencoder for few-shot hyperspectral unmixing and classification[J]. Remote Sensing, 2023, 15(2):451.
[15] Dobigeon N, Tourneret J Y, Richard C, et al. Nonlinear unmixing of hyperspectral images:Models and algorithms[J]. IEEE Signal Processing Magazine, 2014, 31(1):82-94.
[16] Winter M E. N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]// Imaging Spectrometry V.Denver, CO.SPIE,1999:266-275.
[17] Zhang X, Sun Y, Zhang J, et al. Hyperspectral unmixing via deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1755-1759.
[18] Halimi A, Altmann Y, Dobigeon N, et al. Nonlinear unmixing of hyperspectral images using a generalized bilinear model[C]//2011 IEEE Statistical Signal Processing Workshop (SSP). June 28-30,2011, Nice,France.IEEE,2011:413-416.
[19] Licciardi G A, Del Frate F.Pixel unmixing in hyperspectral data by means of neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4163-4172.
[20] Zhu F, Honeine P. Biobjective nonnegative matrix factorization:Linear versus kernel-based models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):4012-4022.
[21] Févotte C, Dobigeon N. Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization[J]. IEEE Transactions on Image Processing, 2015, 24(12):4810-4819.
doi: 10.1109/TIP.2015.2468177 pmid: 26285151
[22] 韩竹, 高连如, 张兵, 等. 高分五号高光谱图像自编码网络非线性解混[J]. 遥感学报, 2020, 24(4):388-400.
Han Z, Gao L R, Zhang B, et al. Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks[J]. National Remote Sensing Bulletin, 2020, 24(4):388-400.
[23] 朱玲, 秦凯, 李明, 等. 改进的堆栈稀疏自编码矿物高光谱端元识别研究[J]. 光谱学与光谱分析, 2021, 41(4):1288-1293.
Zhu L, Qin K, Li M, et al. Research on improved stacked sparse autoencoders for mineral hyperspectral endmember extraction[J]. Spectroscopy and Spectral Analysis, 2021, 41(4):1288-1293.
[24] 朱治青, 苏远超, 李朋飞, 等. 双约束深度卷积网络的高光谱图像空谱解混方法[J]. 信号处理, 2023, 39(1):128-142.
Zhu Z Q, Su Y C, Li P F, et al. Spectral-spatial hyperspectral unmixing using deep double-constraints convolutional network[J]. Journal of Signal Processing, 2023, 39(1):128-142.
[25] Qu Y, Qi H. uDAS:An untied denoising autoencoder with sparsity for spectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1698-1712.
[26] Ozkan S, Kaya B, Akar G B. EndNet:Sparse AutoEncoder network for endmember extraction and hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):482-496.
[27] Su Y, Li J, Plaza A, et al. DAEN:Deep autoencoder networks for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4309-4321.
[28] Khajehrayeni F, Ghassemian H. Hyperspectral unmixing using deep convolutional autoencoders in a supervised scenario[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,13:567-576.
[29] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):529-545.
[30] Palsson B, Sveinsson J R, Ulfarsson M O. Blind hyperspectral unmixing using autoencoders:A critical comparison[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15:1340-1372.
[31] Foody G M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data[J]. International Journal of Remote Sensing, 1996, 17(7):1317-1340.
[32] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256.
Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256.
[1] 范莹琳, 杜松, 赵岳, 邱景智, 杜晓川, 张玉峰, 丁晏, 宋思彤, 车巧慧. 基于随机森林算法的煤矸石山信息提取[J]. 自然资源遥感, 2025, 37(1): 54-61.
[2] 张冬韵, 吴田军, 李曼嘉, 郭逸飞, 骆剑承, 董文. 地块尺度农作物遥感分类及其不确定性分析[J]. 自然资源遥感, 2024, 36(4): 124-134.
[3] 苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4): 210-217.
[4] 李薇, 樊彦国, 周培希. 改进Transformer的高光谱图像地物分类方法——以黄河三角洲为例[J]. 自然资源遥感, 2024, 36(3): 137-145.
[5] 张瑞瑞, 夏浪, 陈立平, 丁晨琛, 郑爱春, 胡新苗, 伊铜川, 陈梅香, 陈天恩. 深度语义分割网络无人机遥感松材线虫病变色木识别[J]. 自然资源遥感, 2024, 36(3): 216-224.
[6] 尚明, 马杰, 李悦, 赵菲, 顾鹏程, 潘光耀, 李倩, 任阳阳. Landsat和GF数据面向对象土地覆盖分类研究[J]. 自然资源遥感, 2024, 36(3): 240-247.
[7] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
[8] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[9] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[10] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
[11] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[12] 李婉悦, 娄德波, 王成辉, 刘欢, 张长青, 范莹琳, 杜晓川. 基于改进U-Net网络的花岗伟晶岩信息提取方法[J]. 自然资源遥感, 2024, 36(2): 89-96.
[13] 林聃, 李秋岑, 陈志奎, 钟芳明, 李丽方. 多标签遥感图像分类研究现状与展望[J]. 自然资源遥感, 2024, 36(2): 10-20.
[14] 刘晓亮, 王志华, 邢江河, 周睿, 杨晓梅, 刘岳明, 张俊瑶, 孟丹. 融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例[J]. 自然资源遥感, 2024, 36(1): 103-109.
[15] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发