Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 105-113    DOI: 10.6046/zrzyyg.2022270
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的闽浙赣GPM降水产品降尺度方法
李新同(), 史岚(), 陈多妍
南京信息工程大学地理科学学院,南京 210044
A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area
LI Xintong(), SHI Lan(), CHEN Duoyan
School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
全文: PDF(3843 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

及时准确评估降水的空间分布对国民经济发展有着重要的意义,目前遥感降水产品大多依靠多元回归模型和物理模型来提高降水监测的精度,很少涉及深度学习模型来改善降水精度。文章改进长短时记忆网络(long short-term memory neural network,LSTM)深度学习模型,得到优化后的LSTM深度学习模型; 引入植被、坡向、坡度等多个降水主导因子,以闽浙赣为研究区域,基于2015—2019年69个气象站点的逐日降水数据,首先对Integrated Multi-satellite Retrievals for Global Precipitation Measurement(GPM IMERG)逐日降水产品进行降尺度,继而分别从加密站验证和个例年验证2个角度评估模型的可靠性。结果发现: 降尺度结果与气象站降水的时空分布趋于一致,比GPM IMERG降水产品更能体现出闽浙赣地区的降水空间分布,GPM降水产品对降水区域存在低估和高估的降水数据得到了校正; 通过加密站验证,降尺度模型在7月和10月表现较好,相关系数不低于0.9,4月次之,1月最低,相关系数是0.7; 通过个例年验证,发现2020年日降水降尺度结果与实测值的相关性超过了0.8以上,均方根误差为5.23 mm,平均相对误差为9.43%。可见,基于深度学习的降尺度模型无论在日尺度还是月尺度都取得了较高的精度,且在时间和空间具有一定的普适性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李新同
史岚
陈多妍
关键词 闽浙赣鄱阳湖流域降水降尺度深度学习    
Abstract

A timely and accurate assessment of the spatial precipitation distribution holds great significance to the development of the national economy. At present, most remote sensing-based precipitation products improve their accuracy using multiple regression models and physical models rather than deep learning models. This study improved a long short-term memory neural network (LSTM) deep learning model, yielding an optimized LSTM deep learning model. With the Fujian-Zhejiang-Jiangxi area as the study area, this study conducted downscaling for an integrated multi-satellite retrievals for global precipitation measurement (IMERG) product based on the daily precipitation data of 69 meteorological stations from 2015 to 2019 by introducing multiple factors controlling precipitation such as vegetation, slope aspect, slope gradient. Finally, this study assessed the reliability of the optimized model through verifications based on high-density meteorological stations and individual years. The results show that the downscaling results are consistent with the spatio-temporal distribution of precipitation measured at meteorological stations and, thus, can better reflect the spatial distribution of precipitation in the study area than the original IMERG. Furthermore, underestimated and overestimated precipitation data of the study area from the GPM product were corrected. As indicated by the verification based on high-density meteorological stations, the downscaled model yielded correlation coefficients of 0.9 or above for July and October, which were followed by April. The correlation coefficient was the lowest of 0.7 in January. As shown by the verification based on individual year data, the correlation coefficient between the daily precipitation downscaling results and the measurement results in 2020 was above 0.8, with a root mean square error of 5.23 mm and an average relative error of 9.43%. Therefore, the deep learning-based downscaling model enjoys high accuracy on both daily and monthly scales and can be widely applied in the assessment of both spatial and temporal precipitation distributions.

Key wordsFujian-Zhejiang-Jiangxi    Poyang Lake basin    precipitation    downscaling    deep learning
收稿日期: 2022-07-04      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:江苏省研究生科研与实践创新计划项目“鄱阳湖流域卫星降水产品降尺度研究与径流模拟”(KYCX22-1130)
通讯作者: 史岚(1978-),女,博士,副教授,主要从事3S技术与气象应用研究。Email: sl_nim@163.com
作者简介: 李新同(1995-),女,硕士研究生,主要从事气象GIS与应用。Email: AlZnCu1995@outlook.com
引用本文:   
李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
LI Xintong, SHI Lan, CHEN Duoyan. A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area. Remote Sensing for Natural Resources, 2023, 35(4): 105-113.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022270      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/105
Fig.1  闽浙赣地区的地形和气象站点分布图
(该图基于自然资源部标准地图服务网站下载的审图号为GS(2016)2923号的标准地图制作,底图无修改。下文同。)
Fig.2  LSTM结构图
L N epochs 训练集 测试集
R2 RMSE/
mm
MRE/% R2 RMSE/
mm
MRE/%
4 300 150 0.88 1.17 14.76 0.94 1.34 14.31
4 300 200 0.89 0.76 71.37 0.87 0.88 62.82
4 300 250 0.87 0.56 89.25 0.66 0.60 83.96
5 300 150 0.87 1.38 18.67 0.88 1.96 16.52
5 300 200 0.89 0.89 30.28 0.90 0.93 34.54
5 300 250 0.89 0.39 33.36 0.75 0.11 32.63
Tab.1  模型调整参数表
Fig.3  2019年1月17日降水空间分布图
Fig.4  2019年4月7日降水空间分布图
Fig.5  2019年7月12日降水空间分布图
Fig.6  2019年10月16日降水空间分布图
Fig.7  平均月降水的泰勒图
Fig.8  日尺度下站点降水量分别和GPM降水量与降尺度结果的散点图
月份 R MRE/% RMSE/mm
GPM 降尺度
结果
GPM 降尺度
结果
GPM 降尺度
结果
1月 0.784 0.868 12.01 5.71 0.683 0.324
4月 0.770 0.879 11.16 7.76 0.885 0.268
7月 0.785 0.888 15.15 7.59 7.392 4.123
10月 0.789 0.893 15.61 7.87 2.673 0.360
平均 0.782 0.882 13.50 7.20 2.908 1.269
Tab.2  GPM降水数据与降尺度结果精度指标
[1] Wang Q X, Wang M B, Fan X H, et al. Trends of temperature and precipitation extremes in the Loess Plateau region of China,1961—2010[J]. Theoretical and Applied Climatology, 2017, 129(3):949-963.
doi: 10.1007/s00704-016-1820-z
[2] Xu C, Luo Y, Xu Y. Projected changes of precipitation extremes in river basins over China[J]. Quaternary International, 2011, 244(2):149-158.
doi: 10.1016/j.quaint.2011.01.002
[3] Yu S, Xia J, Yan Z, et al. Changing spring phenology dates in the Three-Rivers Headwater region of the Tibetan Plateau during 1960—2013[J]. Advances in Atmospheric Sciences, 2018, 35(1):116-126.
doi: 10.1007/s00376-017-6296-y
[4] Huang L, Liu J, Shao Q, et al. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau[J]. Climatic Change, 2011, 109(3):479-502.
doi: 10.1007/s10584-011-0032-x
[5] 张华龙, 肖柳斯, 陈生, 等. 基于GPM卫星的广东汛期降水日变化特征与评估[J]. 热带气象学报, 2020, 36(3): 335-346.
Zhang H L, Xiao L S, Chen S, et al. Characteristics and evaluation of diurnal rainfall variation in rainy seasons in Guangdong based on GPM satellite[J]. Journal of Tropical Meteorology, 2020, 36(3):335-346.
[6] Hou A Y, Kakar R K, Neeck S, et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2014, 95(5):701-722.
doi: 10.1175/BAMS-D-13-00164.1
[7] Sodunke M A, Ojo J S, Adedayo K D, et al. Performance evaluation of metric measures for converting 30-min GPM rain data to 1-min for microwave applications in Tropical region of Nigeria:A multivariate approach[J]. Advances in Space Research, 2022, 69(8):3117-3129.
doi: 10.1016/j.asr.2022.01.040
[8] Lu X, Tang G, Wang X, et al. Correcting GPM IMERG precipitation data over the Tianshan Mountains in China[J]. Journal of Hydrology, 2019, 575:1239-1252.
doi: 10.1016/j.jhydrol.2019.06.019
[9] 史岚, 何其全, 杨娇, 等. 闽浙赣地区GPM IMERG降水产品降尺度建模与比较分析[J]. 地球信息科学学报, 2019, 21(10): 1642-1652.
doi: 10.12082/dqxxkx.2019.180603
Shi L, He Q Q, Yang J, et al. Downscaling modeling of the GPM IMERG precipitation product and comparative analysis in the Fujian-Zhejiang-Jiangxi region[J]. Journal of Geo-Information Science, 2019, 21(10):1642-1652.
[10] 胡实, 韩建, 占车生, 等. 太行山区遥感卫星反演降雨产品降尺度研究[J]. 地理研究, 2020, 39(7): 1680-1690.
doi: 10.11821/dlyj020190545
Hu S, Han J, Zhan C S, et al. Spatial downscaling of remotely sensed precipitation in Taihang Mountains[J]. Geographical Research, 2020, 39 (7):1680-1690.
doi: 10.11821/dlyj020190545
[11] Brocca L, Massari C, Pellarin T, et al. River flow prediction in data scarce regions:Soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa[J]. Scientific Reports, 2020, 10(1):12517.
doi: 10.1038/s41598-020-69343-x pmid: 32719498
[12] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
doi: 10.1162/neco.2006.18.7.1527 pmid: 16764513
[13] Afshin S, Fahmi H, Alizadeh A, et al. Long term rainfall forecasting by integrated artificial neural network-fuzzy logic-wavelet model in Karoon basin[J]. Scientific Research and Essays, 2011, 6(6): 1200-1208.
[14] Bonnet S M, Evsukoff A, Morales R C A. Precipitation nowcasting with weather Radar images and deep learning in São Paulo,Brasil[J]. Atmosphere, 2020, 11(11):1157.
doi: 10.3390/atmos11111157
[15] 王慧媛. 基于深度学习的短时定量降水预测研究[D]. 金华: 浙江师范大学, 2020.
Wang H Y. Short-term quantitative precipitation prediction based on deep learning[D]. Jinhua: Zhejiang Normal University, 2020.
[16] 周康辉, 郑永光, 韩雷, 等. 机器学习在强对流监测预报中的应用进展[J]. 气象, 2021, 47(3): 274-289.
Zhou K H, Zheng Y G, Han L, et al. Advances in application of machine learning to severe convective weather monitoring and forecasting[J]. Meteorological Monthly, 2021, 47(3):274-289.
[17] 郭瀚阳, 陈明轩, 韩雷, 等. 基于深度学习的强对流高分辨率临近预报试验[J]. 气象学报, 2019, 77(4): 715-727.
Guo H Y, Chen M X, Han L, et al. High resolution nowcasting experiment of severe convections based on deep learning[J]. Acta Meteorologica Sinica, 2019, 77(4):715-727.
[18] 徐海龙, 乔书波, 林家乐. 利用长短时记忆网络的日长变化预报[J]. 测绘科学技术学报, 2020, 37(5): 474-478.
Xu H L, Qiao S B, Lin J L. Prediction of length-of-day variations by long short-term memory network[J]. Journal of Geomatics Science and Technology, 2020, 37 (5):474-478.
[19] 袁建刚, 李旺, 刘胜男. 基于深度学习构建的全球电离层NmF2模型[J]. 测绘科学技术学报, 2020, 37(1): 15-20.
Yuan J G, Li W, liu S N. A global ionospheric NmF2 model developed by deep learning[J]. Journal of Geomatics Science and Technology, 2020, 37(1):15-20.
[20] Xiang L, Xiang J, Guan J, et al. A novel reference-based and gradient-guided deep learning model for daily precipitation downscaling[J]. Atmosphere, 2022, 13(4):511.
doi: 10.3390/atmos13040511
[21] 吴海平, 黄世存. 基于深度学习的新增建设用地信息提取试验研究——全国土地利用遥感监测工程创新探索[J]. 国土资源遥感, 2019, 31(4):159-166.doi:10.6046/gtzyyg.2019.04.21.
Wu H P, Huang S C. Research on new construction land information extraction based on deep learning:Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land and Resources, 2019, 31(4):159-166.doi:10.6046/gtzyyg.2019.04.21.
[22] 徐佳, 袁春琦, 程圆娥, 等. 基于主动深度学习的极化SAR图像分类[J]. 国土资源遥感, 2018, 30(1):72-77.doi:10.6046/gtzyyg.2018.01.10.
Xu J, Yuan C Q, Cheng Y E, et al. Active deep learning based polarimetric SAR image classification[J]. Remote Sensing for Land and Resources, 2018, 30(1):72-77.doi:10.6046/gtzyyg.2018.01.10.
[23] 王永全, 李清泉, 汪驰升, 等. 基于系留无人机的应急测绘技术应用[J]. 国土资源遥感, 2020, 32(1):1-6.doi:10.6046/gtzyyg.2020.01.01.
Wang Y Q, Li Q Q, Wang C S, et al. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land and Resources, 2020, 32(1):1-6.doi:10.6046/gtzyyg.2020.01.01.
[24] 蔡祥, 李琦, 罗言, 等. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1):63-71.doi:10.6046/gtzyyg.2020111.
Cai X, Li Q, Luo Y, et al. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land and Resources, 2021, 33(1):63-71.doi:10.6046/gtzyyg.2020111.
[25] 崔林丽, 史军, 杨引明, 等. 中国东部植被NDVI对气温和降水的旬响应特征[J]. 地理学报, 2009, 64(7): 850-860.
Cui L L, Shi J, Yang Y M, et al. Ten-day response of vegetation NDVI to the variations of temperature and precipitation in Eastern China[J]. Acta Geographica Sinica, 2009, 64(7):850-860.
doi: 10.11821/xb200907009
[26] 舒守娟, 王元, 熊安元. 中国区域地理、地形因子对降水分布影响的估算和分析[J]. 地球物理学报, 2007, 50(6): 1703-1712.
Shu S J, Wang Y, Xiong A Y. Estimation and analysis for geographic and orographic influences on precipitation distribution in China[J]. Chinese Journal of Geophysics, 2007, 50(6):1703-1712.
[27] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[28] Yu Y, Si X, Hu C, et al. A review of recurrent neural networks:LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7):1235-1270.
doi: 10.1162/neco_a_01199
[29] 金晓龙, 邵华, 张弛, 等. GPM卫星降水数据在天山山区的适用性分析[J]. 自然资源学报, 2016, 31(12): 2074-2085.
doi: 10.11849/zrzyxb.20160057
Jin X L, Shao H, Zhang C, et al. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 2016, 31(12):2074-2085.
[30] Tan J, Petersen W A, Tokay A. A novel approach to identify sources of errors in IMERG for GPM ground validation[J]. Journal of Hydrometeorology, 2016, 17(9):2477-2491.
doi: 10.1175/JHM-D-16-0079.1
[1] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[2] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[3] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[4] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[5] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[6] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[7] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[8] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[9] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[10] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[11] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[12] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[13] 程军, 李云祯, 邹渝. 新疆干旱时空动态及其对气候变化的响应[J]. 自然资源遥感, 2022, 34(4): 216-224.
[14] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[15] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发