Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 54-61    DOI: 10.6046/zrzyyg.2023231
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于随机森林算法的煤矸石山信息提取
范莹琳1,2(), 杜松1,2(), 赵岳1,2, 邱景智3, 杜晓川4, 张玉峰1,2, 丁晏1,2, 宋思彤1,2, 车巧慧1,2
1.中国煤炭地质总局勘查研究总院地质封存技术研究所,北京 100039
2.中国煤炭地质总局,北京 100038
3.中国矿业联合会,北京 100029
4.苏州工业园区测绘地理信息有限公司,苏州 215000
Information extraction of coal gangue mountain based on random forest algorithm
FAN Yinglin1,2(), DU Song1,2(), ZHAO Yue1,2, QIU Jingzhi3, DU Xiaochuan4, ZHANG Yufeng1,2, DING Yan1,2, SONG Sitong1,2, CHE Qiaohui1,2
1. General Prospecting Institute of China National Administration of Coal Geology, Institute of Geological Deep Well Injection and Stroage, Beijing 100039, China
2. China National Administration of Coal Geology, Beijing 100038, China
3. China Mining Association, Beijing 100029, China
4. Suzhou Industry Park Mapping Co., Ltd., Suzhou 215000, China
全文: PDF(5585 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 煤矸石山是矿山生态修复关注的重点区域,查明煤矸石山的地理空间分布情况对区域环境治理具有重要意义。选取福建省龙岩市新罗区的部分区域为研究区,基于GF-2遥感影像及ASTER GDEM数字高程模型数据,提取光谱特征、纹理特征及地形特征,利用顺序前向特征选择法对特征进行优化,并利用随机森林算法构建地物分类模型,结合多源数据及综合性特征组合对研究区内的地表类型进行分类并实现煤矸石山的信息识别提取。结果表明: ①并非参与分类的特征越多分类精度越高,特征选择后数量由17个减少至9个,煤矸石山总体提取精度达94.07%,Kappa系数达0.819; ②地形特征中高程、坡度、坡向及光谱特征中多光谱波段(B1,B2,B4)、归一化植被指数、影像灰度平均值对煤矸石堆存区识别提取具有重要作用,而纹理特征仅对提高具有明显纹理变化的土地覆盖类型的精度有帮助,对提高煤矸石山提取精度作用较低,仅纹理均值特征对煤矸石山提取影响较大。结合随机森林和特征优化算法,能够有效增强煤矸石山的提取精度,高效整合多源特征数据,加快模型运算速度,为煤矸石山信息提取提供切实可行的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范莹琳
杜松
赵岳
邱景智
杜晓川
张玉峰
丁晏
宋思彤
车巧慧
关键词 遥感GF-2影像随机森林分类煤矸石特征优化    
Abstract

Coal gangue mountains are key areas for the ecological restoration of coal mines. Understanding their geographical distribution holds great significance for regional environmental management. This study focused on part of Xinluo District, Longyan City, Fujian Province. Using GF-2 remote sensing images and data from the ASTER GDEM digital elevation model, this study extracted spectral, texture, and topographic features and then optimized these features using the sequential forward selection method. Subsequently, this study developed a model for surface feature classification using a random forest algorithm. Using this model, this study categorized surface features by integrating multi-source data and comprehensive feature combinations and then achieved the identification and information extraction of coal gangue mountains. The results indicate that the classification accuracy did not necessarily increase with the number of features. After feature selection, the number of features was reduced from 17 to 9, and the overall extraction accuracy of coal gangue mountains reached 94.07%, with a Kappa coefficient of 0.819. Factors playing an important role in the identification and information extraction of coal gangue deposit areas included elevation, slope, aspect, multi-spectral bands B1, B2, and B4 in the spectral characteristics, normalized vegetation index, and grayscale value of images. In contrast, texture features merely improved the accuracy of surface feature types with distinct textural variations, while producing limited effects on the information extraction of coal gangue mountains. For the study area, only the mean texture feature produced significant effects on the information extraction accuracy of coal gangue mountains. The combination of random forest and feature optimization algorithm can effectively enhance the information extraction accuracy of coal gangue mountain, efficiently integrate multi-source feature data, and accelerate model calculation, serving as a practically feasible method for the information extraction of coal gangue mountains.

Key wordsremote sensing    GF-2 image    random forest classification    coal gangue    feature optimization
收稿日期: 2023-07-24      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“高硫矿区地下水污染过程与协同治理技术”(2022YFC3702200)
通讯作者: 杜 松(1987-),男,博士,高级工程师,主要从事矿井水处理及地质封存技术研究。Email: du@cct.org.cn
作者简介: 范莹琳(1996-),女,硕士,助理工程师,主要从事遥感地质研究。Email: 18811458838@163.com
引用本文:   
范莹琳, 杜松, 赵岳, 邱景智, 杜晓川, 张玉峰, 丁晏, 宋思彤, 车巧慧. 基于随机森林算法的煤矸石山信息提取[J]. 自然资源遥感, 2025, 37(1): 54-61.
FAN Yinglin, DU Song, ZHAO Yue, QIU Jingzhi, DU Xiaochuan, ZHANG Yufeng, DING Yan, SONG Sitong, CHE Qiaohui. Information extraction of coal gangue mountain based on random forest algorithm. Remote Sensing for Natural Resources, 2025, 37(1): 54-61.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023231      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/54
Fig.1  研究区影像
Fig.2  地物样本
Fig.3  光谱特征提取结果示意图
Fig.4  纹理特征提取结果示意图
Fig.5  地形特征提取结果示意图
Fig.6  特征重要性排序
Fig.7  测试集精度与特征数量关系
Fig.8  煤矸石堆积区提取结果
地物类别 正确分类点
总和/像元
重度与轻度
煤矸石错分
点/像元
验证点总
和/像元
生产者精
度/%
用户精度/% 错分误差/% 漏分误差/% 煤矸石总体
分类精度/%
Kappa系数
煤矸石重度堆积区 71 3 78 91.03 97.26 2.74 6.41 94.07 0.819
煤矸石轻度堆积区 52 1 57 91.23 77.61 22.39 8.77
煤矸石堆积区 127 4 135 94.07 90.71 9.29 5.93
Tab.1  分类精度评价
[1] 李廉洁, 樊书祥, 王学文, 等. 高光谱成像的煤与矸石分类[J]. 光谱学与光谱分析, 2022, 42(4):1250-1256.
Li L J, Fan S X, Wang X W, et al. Classification method of coal and gangue based on hyperspectral imaging technology[J]. Spectro-scopy and Spectral Analysis, 2022, 42(4):1250-1256.
[2] 李嘉琪, 赵艳玲, 任河, 等. 自燃煤矸石山的遥感识别——基于Landsat8热红外波段地表温度反演数据[J]. 金属矿山, 2022(3):205-212.
Li J Q, Zhao Y L, Ren H, et al. Remote sensing recognition of spontaneous combustion gangue dump:Based on Landsat8 thermal infrared band land surface temperature inversion data[J]. Metal Mine, 2022(3):205-212.
[3] 侯飞, 胡召玲. 基于多尺度分割的煤矿区典型地物遥感信息提取[J]. 测绘通报, 2012(1):22-25.
Hou F, Hu Z L. Remote sensing information extraction of typical surface objects in a coal mining area based on multiple-scale segmentation[J]. Bulletin of Surveying and Mapping, 2012(1):22-25.
[4] 徐良骥, 黄璨, 章如芹, 等. 煤矸石充填复垦地理化特性与重金属分布特征[J]. 农业工程学报, 2014, 30(5):211-219.
Xu L J, Huang C, Zhang R Q, et al. Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5):211-219.
[5] 王小云, 牛艳霞. 煤矸石研究综述: 分类、危害及综合利用[J]. 化工矿物与加工, 2023, 52(11):18-25.
Wang X Y, Niu Y X. Review of research on coal gangue with its classification,hazards and comprehensive utilization[J]. Industrial Minerals and Processing, 2023, 52(11):18-25.
[6] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8):13-17.
Chang J W, Du G J, Du J L, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry, 2022(8):13-17.
[7] 王红美. 煤矸石综合利用现存问题分析与解决对策研究[J]. 资源节约与环保, 2022(1):115-117.
Wang H M. Analysis on existing problems and countermeasures of comprehensive utilization of coal gangue[J]. Resources Economi-zation and Environmental Protection, 2022(1):115-117.
[8] 荆青青, 张志, 王旭. 基于ASTER遥感影像的煤矸石分布信息提取方法[J]. 煤炭科学技术, 2008, 36(5):93-96.
Jing Q Q, Zhang Z, Wang X. Collecting method of coal refuse distribution information based on ASTER remote sensing images[J]. Coal Science and Technology, 2008, 36(5):93-96.
[9] Nádudvari Á. Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland): A case study[J]. International Journal of Coal Geology, 2014,128/129:47-54.
[10] 周涛, 胡振琪, 阮梦颖, 等. 基于无人机遥感的煤矸石山植被分类[J]. 煤炭科学技术, 2023, 51(5):245-259.
Zhou T, Hu Z Q, Ruan M Y, et al. Classification of coal gangue pile vegetation based on UAV remote sensing[J]. Coal Science and Technology, 2023, 51(5):245-259.
[11] Bengio Y, Courville A, Vincent P. Representation learning:A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828.
[12] 王书玉, 张羽威, 于振华. 基于随机森林的洪河湿地遥感影像分类研究[J]. 测绘与空间地理信息, 2014, 37(4):83-85,93.
Wang S Y, Zhang Y W, Yu Z H. Classification of Honghe wetland remote sensing image based on random forests[J]. Geomatics & Spatial Information Technology, 2014, 37(4):83-85,93.
[13] 龙岩市人民政府. 自然地理[EB/OL].(2023-03-16)http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm.
Longyan City People’s Government. Physical geography[EB/OL].(2023-03-16)http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm.
[14] 何仲秋. 龙岩市现已探明煤炭资源状况及远景资源区预测[C]// 2007年赣皖湘苏闽五省煤炭学会联合学术交流会论文集. 厦门,2007:363-365.
He Z Q. The situation of coal resources and the prediction of prospective resource areas have been proved in Longyan City[C]// Proceedings of the 2007 Joint Academic Exchange meeting of Coal societies of Jiangxi,Anhui,Hunan,Jiangsu and Fujian Provinces. Editorial Department of Energy and Environment,2007:363-365.
[15] 福建日报. 龙岩新罗区: 煤矸石变废为宝煤台披上“新绿装”[EB/OL].(2021-08-18).http://fjnews.fjsen.com/2021-08/18/content_30813574.htm.
Fujian Daily. Longyan Xinluo District:Coal gangue waste into trea-sure coal platform covered with "new green"[EB/OL].(2021-08-18).http://fjnews.fjsen.com/2021-08/18/content_30813574.htm.
[16] 帅爽, 张志, 张天, 等. 结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类[J]. 农业工程学报, 2021, 37(21):199-207.
Shuai S, Zhang Z, Zhang T, et al. Method for classifying vegetation types in arid areas combining spectral and textural features of ZY-1 02D[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21):199-207.
[17] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973, SMC-3(6):610-621.
[18] 张炳华, 张镱锂, 谷昌军, 等. 基于随机森林与特征选择的藏东南土地覆被分类方法及精度评价[J]. 地理科学, 2023, 43(3):388-397.
doi: 10.13249/j.cnki.sgs.2023.03.002
Zhang B H, Zhang Y L, Gu C J, et al. Land cover classification based on random forest and feature optimism in the Southeast Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2023, 43(3):388-397.
doi: 10.13249/j.cnki.sgs.2023.03.002
[19] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.
Fang K N, Wu J B, Zhu J P, et al. A review of technologies on random forests[J]. Statistics and Information Forum, 2011, 26(3):32-38.
[20] 柳明星, 刘建红, 马敏飞, 等. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1):218-229.
Liu M X, Liu J H, Ma M F, et al. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm:A case study of Linxia,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):218-229.
[21] 杜晓川, 娄德波, 徐林刚, 等. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4):53-60.doi:10.6046/zrzyyg.2022280.
Du X C, Lou D B, Xu L G, et al. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4):53-60.doi:10.6046/zrzyyg.2022280.
[22] 李兰晖, 黄聪聪, 张镱锂, 等. 基于地理加权随机森林的青藏地区放牧强度时空格局模拟[J]. 地理科学, 2023, 43(3):398-410.
doi: 10.13249/j.cnki.sgs.2023.03.003
Li L H, Huang C C, Zhang Y L, et al. Mapping the multi-temporal grazing intensity on the Qinghai-Tibet Plateau using geographically weighted random forest[J]. Scientia Geographica Sinica, 2023, 43(3):398-410.
doi: 10.13249/j.cnki.sgs.2023.03.003
[23] 陈红星. 基于多源数据和随机森林算法的建筑物尺度人口估算[D]. 上海: 华东师范大学, 2021.
Chen H X. Population estimation at the building level based on multi-source data and random forest algorithm[D]. Shanghai: East China Normal University, 2021.
[24] 胡永攀, 李瑛, 姚熠凯, 等. 基于顺序向前选择算法的制冷系统故障诊断分析[J]. 能源研究与信息, 2016, 32(2):90-95.
Hu Y P, Li Y, Yao Y K, et al. Refrigeration system fault diagnosis based on sequential forward order feature selection algorithm[J]. Energy Research and Information, 2016, 32(2):90-95.
[25] 王斌, 何丙辉, 林娜, 等. 基于随机森林特征选择的茶园遥感提取[J]. 吉林大学学报(工学版), 2022, 52(7):1719-1732.
Wang B, He B H, Lin N, et al. Tea plantation remote sensing extraction based on random forest feature selection[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7):1719-1732.
[1] 刘文慧, 李欣烨, 李晓燕. 基于综合遥感指数的松嫩平原西部草地退化及其对干旱的响应[J]. 自然资源遥感, 2025, 37(1): 232-242.
[2] 徐欣钰, 李小军, 盖钧飞, 李轶鲲. 结合NSCT变换和引导滤波的多光谱图像全色锐化算法[J]. 自然资源遥感, 2025, 37(1): 24-30.
[3] 王体鑫, 杨金中, 邢宇, 王开建. 基于ArcPy与图面优化的国家级自然保护地遥感监测成果自动制图方法[J]. 自然资源遥感, 2025, 37(1): 252-259.
[4] 奥勇, 汪雅, 王晓峰, 吴京盛, 张亦恒, 李雪娇. 2001—2020年间河南省郑州市生态环境质量时空变化及驱动因素分析[J]. 自然资源遥感, 2025, 37(1): 102-112.
[5] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[6] 石海岗, 梁春利, 薛庆, 张恩, 章新益, 张建永, 张春雷, 程旭. 基于卫星遥感的秦山核电周边海域温度分布研究[J]. 自然资源遥感, 2025, 37(1): 152-160.
[7] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[8] 康辉, 窦文章, 韩灵怡, 丁梓越, 吴亮廷, 侯璐. 基于DeepLabv3+模型的地表水体快速遥感监测[J]. 自然资源遥感, 2024, 36(4): 117-123.
[9] 张冬韵, 吴田军, 李曼嘉, 郭逸飞, 骆剑承, 董文. 地块尺度农作物遥感分类及其不确定性分析[J]. 自然资源遥感, 2024, 36(4): 124-134.
[10] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[11] 赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
[12] 庄会富, 王鹏, 苏亚男, 张祥, 范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测[J]. 自然资源遥感, 2024, 36(4): 218-228.
[13] 魏潇, 张立峰, 何毅, 曹胜鹏, 孙强, 高秉海. 2000—2020年黄河流域不同植被类型时空变化特征及其影响因素[J]. 自然资源遥感, 2024, 36(4): 229-241.
[14] 赵玉灵, 杨金中, 孙卫东, 于浩, 邢宇, 陈栋, 马新营, 王体鑫, 王聪. 伊犁河谷矿山地质环境评价分析与生态恢复治理对策[J]. 自然资源遥感, 2024, 36(4): 23-30.
[15] 祁昌炜, 董基恩, 程旭, 叶高峰, 何书跃, 代威, 汪冰. ZY-1 02D高光谱数据在柴北缘荒漠区蚀变矿物填图及找矿中的应用[J]. 自然资源遥感, 2024, 36(4): 31-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发