Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1998, Vol. 10 Issue (4) : 59-66     DOI: 10.6046/gtzyyg.1998.04.13
Geological Construct |
THE REMOTE SENSING GEOLOGIC INTERPRETATION AND REGIONAL TECTONIC EVOLUTION AND METALLOGENIC REGULARITY FOR THE GOLD DEPOSITS IN WEST QINLING AREA
Du Zitu1, Wu Ganguo1, Li Zhizhong2, Wang Yiqiang3
1. Geological University of China, Beijing 100083;
2. Center for Remote Sensing in Geology, Beijing 100083;
3. Changchun University of Geology, Changchun 130061
Download: PDF(604 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The paper systematically illustrates the tectoniclithofacies condition, metallotectonic framework after Meso-cenozoic era, regional metallotectonic evolution, metallogenic regularity and patter of the gold deposit formation, mainly probes into the correlation between regional tectonic evolution and metallogenic regularity. It consides that the intercontinental orogenic tectonic movement, which had been taken place at Yanshan age of post-indosinian orogeny in great extent way, is the key factor to result in metallization and ore-forming of this metallotectonic belt. The research shows that it is important to guide the exploration of gold deposit with the view of tectonic disturbance in this region, it is a significant role to find the new hidden ore deposit and to make the metellogenic prognosis further.

Keywords ArcInfo      Farmland      Grading      VBA     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Jian-Chao
WU Qun
GUO Guan-Cheng
ZHANG Heng-Lei
LIU Tian-You
ZHU Chao-Ji
ZHOU Zhao-Wu
Cite this article:   
PENG Jian-Chao,WU Qun,GUO Guan-Cheng, et al. THE REMOTE SENSING GEOLOGIC INTERPRETATION AND REGIONAL TECTONIC EVOLUTION AND METALLOGENIC REGULARITY FOR THE GOLD DEPOSITS IN WEST QINLING AREA[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(4): 59-66.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1998.04.13     OR     https://www.gtzyyg.com/EN/Y1998/V10/I4/59


[1] 孙殿卿.高庆华.隐伏矿床顶侧.北京:地质出版社,1987

[2] 郑明华等.喷流型与浊积型层控金矿床.成都:四川科学技术出版社,1994

[3] 张二朋等,秦巴及邻区地质一构造特征概论.北京:地质出版社,1993

[4] 涂怀奎.秦岭金矿控矿构造特征和找矿方向.中国区域地质,1991,4

[5] 陈筑川等.秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨.矿床地质,1994.3(4)

[6] 张凤岭.西秦岭南带地质构造演化棋式讨化.甘肃地质学报,1993,2(1)

[7] 许志琴等.活一甘孜造山带的变形构造体制.中国大陆构造论文集.1992

[1] LONG Zehao, ZHANG Tianyuan, XU Wei, QIN Qiming. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
[2] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[3] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[4] LIU Zhe, QIU Bingwen, WANG Zhuangzhuang, QI Wen. Temporal and spatial variation analysis of vegetation cover in the Loess Plateau from 2001 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 192-198.
[5] ZHANG Weige, YANG Liao, CAO Liangzhong, JIA Yang. An improved topographic correction based on the Three Factor + C model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 36-43.
[6] HAN Xiaojing, XING Lixin, PAN Jun, LIU Liwen, ZHOU Caicai, YU Yifan. Improved statistic-empirical topographic correction model and its application[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 187-191.
[7] FU Tian-xin, YAN Hao-wen, LUO Cheng-feng, SHA Yu-kun, QIAO Zhan-ming. Updated Evaluation and Analysis of Farmland Classification in Qilihe District of Lanzhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 140-145.
[8] ZHANG Yu-Mei. RESEARCHES ON URBAN LAND GRADING TECHNIQUES BASED ON REMOTE SENSING ANALYSIS: A CASE STUDY OF WUHAN CITY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 82-85.
[9] PEI Zhi-Yuan, ZHANG Song-Ling, WU Quan, LIU Hai-Qi. THE TECHNICAL FRAMEWORK FOR REGIONAL FARMLAND CHANGE INVESTIGATION USING REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 48-50.
[10] LIN Xian-Cheng, YANG Wu-Nian. THE APPLICATION OF RASTER DATA SPATIALANALYSIS TO URBAN LAND GRADING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 91-101.
[11] PENG Jian-Chao, WU Qun, GUO Guan-Cheng. THE APPLICATION OF ARCINFO 8 TO FARMLAND GRADING:
A CASE STUDY OF JIANGDU CITY
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 46-50.
[12] ZHANG Xiang-Guo, ZHANG Ren-Shun, WANG Yan-Hong, CHEN Hong-Quan, GU Yong. A PROGRADING RATE ANALYSIS OF MUD FLAT SEA COAST BASED ON REMOTE SENSING:
A CASE STUDY OF SONGZHUANG SEA COAST IN GANYU COUNTY, JIANGSU PROVINCE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 69-73.
[13] LIU Ye-bing, WANG Li-min . THE CHECK AND EVALUATION OF THE SPATIAL DATA ACCURACY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(4): 68-71.
[14] GUO Peng, SUN Yan-ling, BAI Jie, LIU Hong-bin, WU Wei. THE APPLICATION OF DEM TO SLOPING FARMLAND INVESTIGATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(4): 59-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech