Please wait a minute...
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 256-261     DOI: 10.6046/gtzyyg.2020160
Development of farmland drought remote sensing dynamic monitoring system based on Android
LONG Zehao1(), ZHANG Tianyuan1, XU Wei1, QIN Qiming1,2()
1. Institute of Remote Sensing and Geographical Information System, School of Earth and Space Science, Peking University, Beijing 100871, China
2. Geographic Information System Technology Innovation Center of the Ministry of Natural Resources, Beijing 100871, China
Download: PDF(3835 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

A farmland drought remote sensing dynamic monitoring system has been established on the Android mobile platform in order to meet the actual needs of users for observation of agricultural conditions such as farmland drought. For the problem of inefficiency in traditional manual field recording by users, the system combines the advantages of portable mobile devices and global positioning system (GPS) to realize the digital management of farmland data, and completes a set of processing flow from field data entry, processing to export. With the purpose of real-time drought dynamic monitoring, the system uses the massive remote sensing data management and powerful calculating ability advantages provided by the Google Earth Engine remote sensing cloud computing platform, utilizes multi-source remote sensing data such as Landsat, MODIS and Sentinel, applies the Flask framework to implement the Google Earth Engine platform Python service interface access scheme, and completes the function of dynamic drought monitoring for farmland, which provides users with a technical application platform for selecting the remote sensing data source, calculating the drought monitoring model and finally generating the grade thematic map of drought.

Keywords farmland drought      dynamic monitoring      Android      cloud computing platform      Flask     
ZTFLH:  TP79  
Corresponding Authors: QIN Qiming     E-mail:;
Issue Date: 21 July 2021
E-mail this article
E-mail Alert
Articles by authors
Zehao LONG
Tianyuan ZHANG
Wei XU
Qiming QIN
Cite this article:   
Zehao LONG,Tianyuan ZHANG,Wei XU, et al. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
URL:     OR
Fig.1  System overall architecture
Fig.2  System service functions
Fig.3  Scheme of farmland drought dynamic monitoring based on GEE platform
Fig.4  Calculation flow of drought monitoring model
平台 地图服务模版 参数含义
https: //{mapid}/tiles/{z}/{x}/{y} MapId为GEE平台生成的MapId; z,x,y分别为瓦片地图层级、行号、列号
http: //{ip}: {port}/api/v1/gee/images?mapid={mapid}&z={z}&x={x}&y={y} ip为Flask服务器IP; port为服务端口; MapId为GEE平台生成的MapId; z,x,y分别为瓦片地图层级、行号、列号
Tab.1  GEE platform and flask server-side map service URL template
遥感数据源 GEE数据集名称 选用波段 空间分
Sentinel-2地表反射率数据 COPERNICUS/
蓝光、绿光、红光、近红外 10
Landsat7地表反射率数据 LANDSAT/LE07/C01/T1_SR 30
Landsat8地表反射率数据 LANDSAT/LC08/C01/T1_SR 30
MODIS MOD09A1地表反射率产品 MODIS/006/MOD09A1 500
Tab.2  Remote sensing data source and band of GEE platform used in the system
Fig.5  Farmland data collection and management
Fig.6  Dynamic calculation of MPDI using Sentinel-2 data
[1] 姚远, 陈曦, 钱静. 遥感数据在农业旱情监测中的应用研究进展[J]. 光谱学与光谱分析, 2019, 39(4):1005-1012.
[1] Yao Y, Chen X, Qian J. Advance in agricultural drought monitoring using remote sensing data[J]. Spectroscopy and Spectral Analysis, 2019, 39(4):1005-1012.
[2] Liu X, Zhu X, Pan Y, et al. Agricultural drought monitoring:Progress,challenges,and prospects[J]. Journal of Geographical Sciences, 2016, 26(6):750-767.
doi: 10.1007/s11442-016-1297-9 url:
[3] 金川, 秦其明, 汪冬冬, 等. 干旱监测遥感支持系统的设计与实现[J]. 遥感学报, 2007(3):420-425.
[3] Jin C, Qin Q M, Wang D D, et al. Design and implementation of drought monitoring remote sensing supporting system[J]. Journal of Remote Sensing, 2007(3):420-425.
[4] Wu B, Meng J, Li Q, et al. Remote sensing-based global crop monitoring:Experiences with China’s CropWatch system[J]. International Journal of Digital Earth, 2014, 7(2):113-137.
doi: 10.1080/17538947.2013.821185 url:
[5] 李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12):1475-1481.
[5] Li D R. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1475-1481.
[6] Novac O C, Novac M, Gordan C, et al. Comparative study of google android,apple IOS and microsoft windows phone mobile operating systems[C]// 2017 14th International Conference on Engineering of Modern Electric Systems (EMES).IEEE, 2017:154-159.
[7] 郭铌, 王小平. 遥感干旱应用技术进展及面临的技术问题与发展机遇[J]. 干旱气象, 2015, 33(1):1-18.
[7] Guo N, Wang X P. Advances and developing opportunities in remote sensing of drought[J]. Journal of Arid Meteorology, 2015, 33(1):1-18.
[8] 张新, 胡晓东, 魏嘉伟. 基于云计算的地理信息服务技术[J]. 计算机科学, 2019, 46(s1):532-536.
[8] Zhang X, Hu X D, Wei J W. Cloud computing based geographical information service technologies[J]. Computer Science, 2019, 46(s1):532-536.
[9] 赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12):2098-2110.
[9] Zhao Z M, Gao L R, Chen D, et al. Development of satellite remote sensing and image processing platform[J]. Journal of Image and Graphics, 2019, 24(12):2098-2110.
[10] Dong J, Xiao X, Menarguez M A, et al. Mapping paddy rice planting area in northeastern asia with Landsat 8 images,phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185:142-154.
doi: 10.1016/j.rse.2016.02.016 url:
[11] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
doi: 10.1016/j.rse.2017.06.031 url:
[12] Ghulam A, Qin Q, Zhan Z. Designing of the perpendicular drought index[J]. Environmental Geology, 2007, 52(6):1045-1052.
doi: 10.1007/s00254-006-0544-2 url:
[13] Ghulam A, Qin Q, Teyip T, et al. Modified perpendicular drought index (MPDI):A real-time drought monitoring method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2):150-164.
doi: 10.1016/j.isprsjprs.2007.03.002 url:
[14] 秦其明, 游林, 赵越, 等. 基于二维光谱特征空间的土壤线自动提取算法[J]. 农业工程学报, 2012, 28(3):167-171.
[14] Qin Q M, You L, Zhao Y, et al. Soil line automatic identification algorithm based on two-dimensional feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(3):167-171.
[15] Baret F, Clevers J, Steven M D. The robustness of canopy gap fraction estimates from red and near-infrared reflectances:A comparison of approaches[J]. Remote Sensing of Environment, 1995, 54(2):141-151.
doi: 10.1016/0034-4257(95)00136-O url:
[1] GAO Junhua, ZOU Lianxue, LONG Huan, CHU Shuitao. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3): 240-248.
[2] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[3] Jie XIANG, Jianping CHEN, Shi LI, Zili LAI, Haozhong HUANG, Jing LIU, Shuai XIE. Research on application of unmanned aerial vehicle technology to dynamic monitoring of reserves in the Shouyun iron mine, Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 224-229.
[4] SHI Qingyun, ZHAO Zhifang, SONG Kun, YAN Jieru. Dynamic monitoring of water erosion desertification in Dianchi watershed based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 101-105.
[5] FAN Min, SUN Xiaofei, SU Fenghuan, JIANG Huabiao, HAN Lei. Application analysis of remote sensing dynamic monitoring for geological hazards in southwest mountainous areas using domestic high resolution satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 85-89.
[6] WANG Xiaohong, JING Qingqing, ZHOU Yingjie, YAO Weiling. Remote sensing dynamic monitoring of coal mine subsidence disaster in Shandong Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 203-210.
[7] LIU Ying, HOU Enke, YUE Hui. Dynamic monitoring and trend analysis of vegetation change in Shendong mining area based on MODIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 132-137.
[8] ZHAO Yuling. Remote sensing dynamic monitoring of the shoreline and the mangrove wetland in the Lingdingyang Estuary in the past 40 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 136-142.
[9] ZHANG Weikang, MA Huiyun, ZOU Zhengrong, HE Zhuochen, ZHAO Guoqing. Automatic detection of night time radiation fog based on SBDART radiative transfer model and the analysis of time series[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 80-86.
[10] YUAN Yuan, LIU Shunxi, CHEN Jingbo, WANG Zhongwu, LIU Xiaoyi, WU Bin. Parallel image segmentation technique controlled by land use patch[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 160-165.
[11] MU Jingqin, ZHAN Sheng. Remote sensing monitoring of dynamic changes of vegetation information in Tangshan City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 178-182.
[12] CAO Zijian, WU Xueyu, GAO Zhenyu, LI Ning, LI Peng, SUN Fuguo. Land use dynamic remote sensing monitoring region partitioning method based on the development pressure state: A case study of Jinnan district,Tianjin City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 124-129.
[13] TONG Li-qiang, LI Li. Remote Sensing Monitoring of Water Erosion Desertification in the Three Gorges Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 100-103.
[14] GAO Zhen-yu, WU Xue-yu, FAN Qing-dong, CAO Zi-jian, MEN Chun-chun. An Analysis of the Problems Concerning Remote Sensing Dynamic Monitoring of Land Use[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 20-24.
[15] ZHAO Yu-Ling, ZHANG YA-Lin, NIE Hong-Feng, YU WAN-Xin. The Remote Sensing Dynamic Monitoring of the Wetlands in Eastern Economic Zones of China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 163-168.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech