|
|
|
|
|
|
Development of farmland drought remote sensing dynamic monitoring system based on Android |
LONG Zehao1( ), ZHANG Tianyuan1, XU Wei1, QIN Qiming1,2( ) |
1. Institute of Remote Sensing and Geographical Information System, School of Earth and Space Science, Peking University, Beijing 100871, China 2. Geographic Information System Technology Innovation Center of the Ministry of Natural Resources, Beijing 100871, China |
|
|
Abstract A farmland drought remote sensing dynamic monitoring system has been established on the Android mobile platform in order to meet the actual needs of users for observation of agricultural conditions such as farmland drought. For the problem of inefficiency in traditional manual field recording by users, the system combines the advantages of portable mobile devices and global positioning system (GPS) to realize the digital management of farmland data, and completes a set of processing flow from field data entry, processing to export. With the purpose of real-time drought dynamic monitoring, the system uses the massive remote sensing data management and powerful calculating ability advantages provided by the Google Earth Engine remote sensing cloud computing platform, utilizes multi-source remote sensing data such as Landsat, MODIS and Sentinel, applies the Flask framework to implement the Google Earth Engine platform Python service interface access scheme, and completes the function of dynamic drought monitoring for farmland, which provides users with a technical application platform for selecting the remote sensing data source, calculating the drought monitoring model and finally generating the grade thematic map of drought.
|
Keywords
farmland drought
dynamic monitoring
Android
cloud computing platform
Flask
|
|
Corresponding Authors:
QIN Qiming
E-mail: longzehao@pku.edu.cn;qmqin@pku.edu.cn
|
Issue Date: 21 July 2021
|
|
|
[1] |
姚远, 陈曦, 钱静. 遥感数据在农业旱情监测中的应用研究进展[J]. 光谱学与光谱分析, 2019, 39(4):1005-1012.
|
[1] |
Yao Y, Chen X, Qian J. Advance in agricultural drought monitoring using remote sensing data[J]. Spectroscopy and Spectral Analysis, 2019, 39(4):1005-1012.
|
[2] |
Liu X, Zhu X, Pan Y, et al. Agricultural drought monitoring:Progress,challenges,and prospects[J]. Journal of Geographical Sciences, 2016, 26(6):750-767.
doi: 10.1007/s11442-016-1297-9
url: http://link.springer.com/10.1007/s11442-016-1297-9
|
[3] |
金川, 秦其明, 汪冬冬, 等. 干旱监测遥感支持系统的设计与实现[J]. 遥感学报, 2007(3):420-425.
|
[3] |
Jin C, Qin Q M, Wang D D, et al. Design and implementation of drought monitoring remote sensing supporting system[J]. Journal of Remote Sensing, 2007(3):420-425.
|
[4] |
Wu B, Meng J, Li Q, et al. Remote sensing-based global crop monitoring:Experiences with China’s CropWatch system[J]. International Journal of Digital Earth, 2014, 7(2):113-137.
doi: 10.1080/17538947.2013.821185
url: http://www.tandfonline.com/doi/abs/10.1080/17538947.2013.821185
|
[5] |
李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12):1475-1481.
|
[5] |
Li D R. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1475-1481.
|
[6] |
Novac O C, Novac M, Gordan C, et al. Comparative study of google android,apple IOS and microsoft windows phone mobile operating systems[C]// 2017 14th International Conference on Engineering of Modern Electric Systems (EMES).IEEE, 2017:154-159.
|
[7] |
郭铌, 王小平. 遥感干旱应用技术进展及面临的技术问题与发展机遇[J]. 干旱气象, 2015, 33(1):1-18.
|
[7] |
Guo N, Wang X P. Advances and developing opportunities in remote sensing of drought[J]. Journal of Arid Meteorology, 2015, 33(1):1-18.
|
[8] |
张新, 胡晓东, 魏嘉伟. 基于云计算的地理信息服务技术[J]. 计算机科学, 2019, 46(s1):532-536.
|
[8] |
Zhang X, Hu X D, Wei J W. Cloud computing based geographical information service technologies[J]. Computer Science, 2019, 46(s1):532-536.
|
[9] |
赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12):2098-2110.
|
[9] |
Zhao Z M, Gao L R, Chen D, et al. Development of satellite remote sensing and image processing platform[J]. Journal of Image and Graphics, 2019, 24(12):2098-2110.
|
[10] |
Dong J, Xiao X, Menarguez M A, et al. Mapping paddy rice planting area in northeastern asia with Landsat 8 images,phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185:142-154.
doi: 10.1016/j.rse.2016.02.016
url: https://linkinghub.elsevier.com/retrieve/pii/S003442571630044X
|
[11] |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
doi: 10.1016/j.rse.2017.06.031
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717302900
|
[12] |
Ghulam A, Qin Q, Zhan Z. Designing of the perpendicular drought index[J]. Environmental Geology, 2007, 52(6):1045-1052.
doi: 10.1007/s00254-006-0544-2
url: http://link.springer.com/10.1007/s00254-006-0544-2
|
[13] |
Ghulam A, Qin Q, Teyip T, et al. Modified perpendicular drought index (MPDI):A real-time drought monitoring method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2):150-164.
doi: 10.1016/j.isprsjprs.2007.03.002
url: https://linkinghub.elsevier.com/retrieve/pii/S0924271607000111
|
[14] |
秦其明, 游林, 赵越, 等. 基于二维光谱特征空间的土壤线自动提取算法[J]. 农业工程学报, 2012, 28(3):167-171.
|
[14] |
Qin Q M, You L, Zhao Y, et al. Soil line automatic identification algorithm based on two-dimensional feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(3):167-171.
|
[15] |
Baret F, Clevers J, Steven M D. The robustness of canopy gap fraction estimates from red and near-infrared reflectances:A comparison of approaches[J]. Remote Sensing of Environment, 1995, 54(2):141-151.
doi: 10.1016/0034-4257(95)00136-O
url: https://linkinghub.elsevier.com/retrieve/pii/003442579500136O
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|