Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (4) : 10-13     DOI: 10.6046/gtzyyg.2010.04.03
Technology and Methodology |

The Improvement of Soil Moisture Estimation Using ERS Scatterometer Data
 SUN Rui-Jing, SHI Jian-Cheng, WANG Yong-Qian
State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Beijing 100101, China
Download: PDF(639 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 ERS Wind Scatterometer provides capability of the multiple angles by three different look antennas. In this study, the authors have made an evaluation whether the multi-incidence angle observations can help improve surface soil moisture estimations or not. With the theoretical surface backscattering model, i.e., the Advanced Integral Equation Model (AIEM), the authors first simulated a surface backscattering database with a wide range of surface roughness and soil moisture properties at different incident angles. Then,a parameterized surface backscattering model was developed using the simulated database. The newly developed simple model has the roughness function that can be described by a single combined roughness parameter from the commonly used surface roughness descriptors (RMS height and correlation length). This makes it possible for the model to be used as an inversion model.  The development of this simple model, its accuracy, and the inversion test can be demonstrated by using the ground measurements from the Intensive Observation Period (IOP'98) field campaign in 1998 of the Global Energy and Water Experiment (GEWEX) Asian Monsoon Experiment Tibet (GAME/Tibet).

Keywords Karst stone desertization      Intensity      Remote sensing comprehensive analysis     
: 

 

 
  TP 79

 
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Chuan-ming
Cite this article:   
Yang Chuan-ming.
The Improvement of Soil Moisture Estimation Using ERS Scatterometer Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 10-13.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.04.03     OR     https://www.gtzyyg.com/EN/Y2010/V22/I4/10

[1]Wagner W, Scipal K. Large-scale Moisture Mapping in Western Africa Using the ERS Scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38:1777-1782.

[2]Zribi Mehrez, Dechambre Monique. A New Empirical Model to Retrieve Soil Moisture and Roughness from C-band Radar Data[J]. Remote Sensing of Environment, 2003, 84(1):42-52.

[3]Lw Alexander, Mauser Wolfram. A Two Parameter Backscattering Model for Bare Soil Surfaces:from Theory to Application[C]//Proceedings of IEEE International Geosciences and Remote Sensing Symposium, 2004
:811-814.

[4]王建明. 基于ERS散射计数据的青藏高原地表土壤水分估算方法研究[D]. 北京:中国科学院遥感应用研究所, 2005.

[5]Wu T D, Chen K S, Shi J C, et al. A Transition Model for the Reflection Coefficient in Surface Scattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9):2040-2050.

[6]GAME/Tibet Data Catalog[DB].(2000-06-30) [2009-12-20] http://monsoon.t.u-tokyo.ac.jp/tibet/.

[1] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[2] Haiqing WANG, Jianting HAO, Li LI, Na AN, Wenjia XU, Yaqiu YIN. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(1): 115-119.
[3] Haiqing WANG, Li LI, Ling CHEN, Wenjia XU, Jinzhong YANG, Qiong LIU. An analysis of mining intensity about metal mines based on investigation of tailing reservoirs in Tibet[J]. Remote Sensing for Land & Resources, 2019, 31(2): 218-223.
[4] Zhaohua LIU, Chunyan ZHANG. Dynamic monitoring and driving factors analysis of urban expansion in Kaifeng[J]. Remote Sensing for Land & Resources, 2018, 30(4): 193-199.
[5] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[6] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
[7] QI Shuai, ZHANG Yonghong, WANG Huiqin. Analysis of fire disturbed forests scattering characteristics using polarimetric SAR image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 48-53.
[8] LIU Fang, ZHANG Zeng-Xiang, ZHAO Xiao-Li, HU Shun-Guang. Spatial-Temporal Change Characteristics and Cluster Analysis of Rural Settlements in Shandong Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 101-107.
[9] ZHAO Fu-Yue, ZHANG Rui-Jiang, YANG Qing-Hua. GEOLOGICAL MAPPING METHOD BASED ON SYNTHETIC-APERTURE RADAR IMAGE AND ITS APPLICATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 100-105.
[10] YU Kan, KE Chang-Qing. A RAPID EVALUATION OF SOIL EROSION INTENSITY
BASED ON REMOTE SENSING AND GIS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(3): 82-84.
[11] GU Hai-Yan, LI Hai-Tao, YANG Jing-Hui. THE REMOTE SENSING IMAGE FUSION METHOD
BASED ON MINIMUM NOISE FRACTION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 53-55.
[12] Yang Chuan-ming . A DISCUSSION ON THE REMOTE SENSING ANALYSIS OF KARST STONE DESERTIZATION IN GUANGXI[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(2): 34-36,63.
[13] Zhang Bing, Wang Xiangjun, Tong Qingxi . A NEW METHOD TO INVESTIGATE THE SOIL EROSION INTENSITY IN LOSS HILL AREA[J]. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(4): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech