Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 219-223     DOI: 10.6046/gtzyyg.2010.s1.45
Technology Application |

Variation of Wetland Landscape Pattern and Its Ecological Effects in the Green Corridor of the Arid Inland in Northwest China:a Case Study of the Lower Reaches of the Qarqan River
 ZHU Gang, GAO Hui-Jun, ZENG Guang, JIN Mou-Shun
Aerophotography and Remote Sensing of China Coal Shanxi, Xi’an 710054, China
Download: PDF(561 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using “3S” technology, the authors carried out research on the changes of the wetland landscape pattern of the

green corridor in the lower reaches of the Qarqan River based on the diversity index, dominance index, fragment index and

patch shaped index from 1975 to 2007. Some conclusions have been reached: the wetland area and patch amount increased a

little from 1975 to 2000 and decreased greatly from 2000 to 2007. In the past 32 years, the average area of the patch and

the patch density have been reduced continuously, and the patch shape turned to complex; the diversity of the landscape

pattern decreased, but the dominance and the fragmentation increased; in all the wetland types, the change range of the

river wetland area was small, the lake wetland area increased greatly, and the marsh wetland area decreased considerably.

The variation of the wetland landscape aggravated the sandy desertification and led to the reduction of biodiversity, but

it guaranteed agricultural water demands and ecological water demands, which would be favorable to the stability of the

Qarqan River green corridor ecosystem.

Keywords Nansha Islands      TM Imagery      Adjustment     
:     
  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Wen-yu
DING Qian
PAN Chun-mei
Cite this article:   
CAO Wen-yu,DING Qian,PAN Chun-mei.
Variation of Wetland Landscape Pattern and Its Ecological Effects in the Green Corridor of the Arid Inland in Northwest China:a Case Study of the Lower Reaches of the Qarqan River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 219-223.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.45     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/219

[1]李静,孙虎,邢东兴,等.西北干旱与半干旱区湿地特征与保护[J].中国沙漠,2003,23(6):670-674.


[2]毛德华,夏军,黄友波.西北地区水资源与生态环境问题及其形成机制分析[J].自然灾害学报,2004,13(4):55-61.


[3]赵其国,高俊峰.中国湿地资源的生态功能及其分区[J].中国生态农业学报,2007,15(1):1-4.




[4]赵锐峰,周华荣,肖笃宁,等.塔里木河中下游地区湿地景观格局变化[J].生态学报,2006,26(10):3470-3478.


[5]汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化[J].生态学报,2003,23(2):237-243.


[6]王宪礼,肖笃宁,布仁仓,等.辽河三角洲湿地的景观格局分析[J].生态学报,1997,17(3):317-323.


[7]白军红,欧阳华,崔保山,等.近40年来若尔盖高原高寒湿地景观格局变化[J].生态学报,2008,28(5):2245-2252.


[8]刘玉安,塔西甫拉提·特依拜,沈涛,等.基于“3S”技术的于田绿洲湿地动态变化研究[J].中国沙漠,2005,25(5):706-710.


[9]丁圣彦,梁国付.近20年来河南沿黄湿地景观格局演化[J].地理学报,2004,59(5):653-665.


[10]周可法,吴世新,李静,等.新疆湿地资源时空变异研究[J].干旱区地理,2004,27(3):405-408.


[11]陈亚宁,李卫红,陈亚鹏,等.新疆塔里木河下游断流河道输水与生态恢复[J].生态学报,2007,27(2):538-545.


[12]王浩,秦大庸,王研,等.西北内陆干旱区生态环境及其演变趋势[J].水利学报,2004,(8):8-14.


[13]高前兆,屈建军,王润,等.塔里木河下游绿色走廊生态输水对沙漠化逆转的影响[J].中国沙漠,2007,27(1):52-58.


[14]李禄康.湿地与湿地公约[J].世界林业研究,2001,14(1):1-7.


[15]白军红,欧阳华,杨志锋,等.湿地景观格局变化研究进展[J].地理科学进展,2005,24(4):36-45.


[16]肖笃宁,李秀珍,高峻,等.景观生态学[M].北京:科学出版社,2003.


 

[1] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[2] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[3] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[4] HAN Jie, XIE Yong, WU Guoxi, LIU Qiyue, GAO Hailiang, GUAN Xiaoguo. Geo-positioning accuracy analysis for domestic high-resolution satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 100-107.
[5] PAN Hongbo, ZOU Zhengrong, ZHANG Guo, ZHANG Yunsheng, WANG Taoyang. Block adjustment of high resolution satellite image using RFM with the same stripe constraint[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 46-52.
[6] ZHAO Zheng, LING Xiao, SUN Changkui, LI Yongzhi. UAV tilted images matching research based on POS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 87-92.
[7] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[8] XU Zhenliang, LI Yanhuan, YAN Li, YAN Lei. PCG sparse algorithm for close-range block bundle adjustment[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 44-47.
[9] HAN Jie, GU Xingfa, YU Tao, XIE Yong, ZHENG Fengjie, ZHANG Feng. Block adjustment for ZY-3 satellite images based on RFM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 64-71.
[10] SONG Yan, FAN Gaojing, ZUO Jia. Adjustment model for remote sensing images with high spatial resolution from multi-sensors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 21-26.
[11] LIU Bin, SUN Xi-liang, DI Kai-chang, LIU Zhao-qin. Accuracy Analysis and Validation of ZY-3’s Sensor Corrected Products[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 36-40.
[12] ZHAO Hai-tao, ZHANG Bing, ZUO Zheng-li, CHEN Zheng-chao. POS System Boresight Misalignment Calibration with Bundle Adjustment Method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 22-28.
[13] WANG Sheng-yao, LIU Sheng-wei, CUI Xi-min, GUO Da-hai, ZHENG Xiong-wei, LU Xiao. Airborne LiDAR Strip Adjustment Research: Based on Model Parameters and Ground Control Points Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 19-22.
[14] CHEN Lei, DENG Ru-ru, CHEN Qi-dong, HE Ying-qing, QIN Yan, LOU Quan-sheng. The Extraction of Water Body Information from TM Imagery Based on Water Quality Types[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 90-94.
[15] QI Zhi-Xin, DENG Ru-Ru. THE ATMOSPHERIC CORRECTION METHOD FOR NONHOMOGENEOUS
ATMOSPHERE BASED ON MANY DARK OBJECTS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech