Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 213-218     DOI: 10.6046/gtzyyg.2020.02.27
|
Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor
Yizhe WANG1, Guo LIU2,3(), Li GUO1, Shihu ZHAO1, Xueli ZHANG4
1. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
2. National Engineering Research Center for Geographic Information System, Wuhan 430074, China
3. The National Geological Library of China, Beijing 100083, China
4. East China Mineral Exploration and Development Bureau, Nanjing 210007, China
Download: PDF(3435 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With its advantages of wide breadth, strong comprehensive coverage and short revisit period, GF-1 satellite has become one of the important data sources used in land and resources survey, remote sensing monitoring of agriculture and forestry, and major national engineering construction. In this study, the authors took the China-Pakistan Economic Corridor as an example, selected the GF-1 WFV data for comparative experiments, and analyzed two key factors that affect the application of remote sensing images, i.e., how to improve the geometric positioning accuracy of remote sensing images and the true color image synthesis method. The experimental results indicate that the block adjustment model based on rational function model technology and RGB-NIR color synthesis model have good performance in image accuracy and visual effect of imagery respectively. The X-direction residual and Y-direction residual of ortho-image were improved to 0.79 pixels and 0.83 pixels. The information entropy, average gradient, mean and standard deviation of the resulting images were improved in varying degrees. This method could not only ensure the true and natural color of the image but also keep the information details, with the image surface effect better optimized. This test method is a better strategy for large scale data application in actual production.

Keywords GF-1 WFV data      block adjustment      accuracy      true color image enhancement      China-Pakistan Economic Corridor     
:  TP75  
Corresponding Authors: Guo LIU     E-mail: liuguo@cgl.org.cn
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yizhe WANG
Guo LIU
Li GUO
Shihu ZHAO
Xueli ZHANG
Cite this article:   
Yizhe WANG,Guo LIU,Li GUO, et al. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.27     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/213
Fig.1  Flowchart of RGB-NIR transformation method
Fig.2  Distribution of check points and control points
实验方案 控制点个数 检查点 X方向/像素 Y方向/像素
RMSE 最大值 均值 RMSE 最大值 均值
1 218 2.74 10.18 2.73 5.31 43.21 4.47
2 12 206 1.00 4.03 0.99 3.20 8.82 1.99
3 218 1.38 4.79 1.27 3.56 9.67 1.49
4 12 206 0.79 3.32 0.78 0.83 4.68 0.69
Tab.1  Results of different methods
Fig.3  Example of accuracy shown in vision
Fig.4  Effect comparison of different natural color simulating methods of GF-1 WFV
模型 信息熵 平均梯度 均值 标准差
模型1 6.104 3.469 81.870 59.875
模型2 5.958 3.308 88.154 60.891
模型3 5.979 3.578 106.940 71.723
Tab.2  Statistics of quantitative evaluation parameters
Fig.5  Remote sensing image of China-Pakistan Economic Corridor
Fig.6  Local effects of GF-1 WFV image
[1] 邵永社, 李晶, 张绍明, 等. 基于线特征的SPOT影像几何纠正方法[J]. 同济大学学报(自然科学版), 2010,38(8):1249-1254.
[1] Shao Y S, Li J, Zhang S M, et al. Rectification methods based on line features for SPOT imagery[J]. Journal of Tongji University(Natural Science), 2010,38(8):1249-1254.
[2] Fraser C S, Dial G, Grodecki J. Sensor orientation via RPCs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006,60(3):182-194.
[3] Fontana F M A, Trishchenko A P, Khlopenkov K V, et al. Impact of orthorectification and spatial sampling on maximum NDVI composite data in mountain regions[J]. Remote Sensing of Environment, 2009,113(12):2701-2712.
[4] 张过, 李德仁, 袁修孝, 等. 卫星遥感影像的区域网平差成图精度[J]. 测绘科学技术学报, 2006,23(4):239-242.
[4] Zhang G, Li D R, Yuan X X, et al. The mapping accuracy of satellite imagery block adjustment[J]. Journal of Geomatics Science and Technology, 2006,23(4):239-242.
[5] 张红英. 卫星遥感影像视觉效果增强模型及方法研究[D].武汉:中国地质大学(武汉), 2018.
[5] Zhang H Y. The research on models and methods for the visual effect enhancement of satellite remote sensing imagery[D]. Wuhan:China University of Geosciences, 2018.
[6] 唐新明, 张过, 祝小勇, 等. 资源三号测绘卫星三线阵成像几何模型构建与精度初步验证[J]. 测绘学报, 2012,41(2):191-198.
[6] Tang X M, Zhang G, Zhu X Y, et al. Triple linear-array imaging geometry model of “ZY-3” surveying satellite and its validation[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(2):191-198.
[7] 李德仁, 张过, 江万寿, 等. 缺少控制点的SPOT-5 HRS影像RPC模型区域网平差[J]. 武汉大学学报(信息科学版), 2006,31(5):377-381.
[7] Li D R, Zhang G, Jiang W S, et al. SPOT-5 HRS satellite imagery block adjustment without GCPS or with single GCP[J]. Geomatics and Information Science of Wuhan University, 2006,31(5):377-381.
[8] 李德仁, 郑肇葆. 解析摄影测量学[M]. 北京: 测绘出版社, 1992: 174-184.
[8] Li D R, Zheng Z B. Analytical photogrammetry[M]. Beijing: Surveying and Mapping Press, 1992: 174-184.
[9] 丁慧梅. 利用近红外提高多光谱遥感图像颜色自然性研究[D]. 昆明:云南师范大学, 2016.
[9] Ding H M. Using near infrared to improve color naturalness of multi-spectral images[D]. Kunming:Yunnan Normal University, 2016.
[10] 张伟, 郑旭霞. 基于植被指数的多光谱影像真彩色合成方法[J]. 测绘与空间地理信息, 2010,33(6):110-113.
[10] Zhang W, Zheng X X. A method of true color synjournal of multi-spectral images based on vegetation index[J]. Geomatics and Spatial Information Technology, 2010,33(6):110-113.
[11] 孙家波, 杨建宇, 张超, 等. 应用“资源一号”02C卫星数据的模拟真彩色技术[J]. 国土资源遥感, 2013,25(4):33-39.doi: 10.6046/gtzyyg.2013.04.06.
[11] Sun J B, Yang J Y, Zhang C, et al. Simulating true color technology applied to “ZY-1”02C satellite[J]. Remote Sensing for Land and Resources, 2013,25(4):33-39.doi: 10.6046/gtzyyg.2013.04.06.
[12] 孙攀, 董玉森, 陈伟涛, 等. 高分二号卫星影像融合及质量评价[J]. 国土资源遥感, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
[12] Sun P, Dong Y S, Chen W T, et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
[13] 孙文, 尤红建, 傅兴玉, 等. 基于非线性MASK的遥感影像匀光算法[J]. 测绘科学, 2014,39(9):130-134.
[13] Sun W, You H J, Fu X Y, et al. A non-linear MASK dodging algorithm for remote sensing images[J]. Science of Surveying and Mapping, 2014,39(9):130-134.
[1] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[2] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[3] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[4] Dongsheng XIAO, Song YANG. A review of population spatial distribution based on nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 10-19.
[5] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[6] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
[7] Jie HAN, Zui TAO, Huina LI, Baoliang MIAO, Hongbin SHI, Qiyue LIU. Geo-positioning accuracy analysis of GF-4 satellite imagery[J]. Remote Sensing for Land & Resources, 2019, 31(3): 104-110.
[8] Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
[9] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[10] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[11] Hongli SONG, Xiaonan ZHANG. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 26-32.
[12] Jiaojiao DIAO, Xinye GONG, Mingshi LI. A comprehensive change detection method for updating land cover data base[J]. Remote Sensing for Land & Resources, 2018, 30(1): 157-165.
[13] XUE Wu, MA Yongzheng, ZHAO Ling, MO Delin. UAV-based rural homestead ownership determination[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 124-127.
[14] JINAG Wei, HE Guojin, LONG Tengfei, YIN Ranyu, SONG Xiaolu, YUAN Yiqin, LING Saiguang. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 211-216.
[15] PAN Hongbo, ZOU Zhengrong, ZHANG Guo, ZHANG Yunsheng, WANG Taoyang. Block adjustment of high resolution satellite image using RFM with the same stripe constraint[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 46-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech