Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 100-107     DOI: 10.6046/gtzyyg.2016.04.16
Technology and Methodology |
Geo-positioning accuracy analysis for domestic high-resolution satellite imagery
HAN Jie1, XIE Yong2, WU Guoxi1, LIU Qiyue2, GAO Hailiang2, GUAN Xiaoguo1
1. School of Urban-rural Planning and Architecture, Xuchang University, Xuchang 461000, China;
2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(6306 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The geo-positioning accuracy of domestic high-resolution satellite imagery is a hotspot problem that has attracted much attention among researchers. In this paper, GF-1 and ZY-3 satellite images were treated as investigated objects. After detecting the system error of domestic high-resolution satellite imagery rational polynomial coefficierts(RPCs), using the rational function model(RFM) bundle adjustment method based on the affine model in image space the three-dimensional geo-positioning system errors of stereo image pairs from one single satellite platform were eliminated. The geo-positioning accuracy of domestic high-resolution satellite imagery was comprehensively analyzed, including the geo-positioning accuracy of single scene and stereo image pairs from single and different satellite platforms. Finally, the main factors affecting the geo-positioning accuracy of domestic high-resolution imagery was discussed, and the results obtained by the authors would provide some useful reference information to realize the domestic satellites joint observations.

Keywords oblique photogrammetry      facade extraction      point cloud      normal vector      clustering analysis     
:  TP79  
Issue Date: 20 October 2016
E-mail this article
E-mail Alert
Articles by authors
ZHOU Hanghang
ZOU Zhengrong
ZHANG Yunsheng
Cite this article:   
ZHOU Hanghang,ZOU Zhengrong,ZHANG Yunsheng, et al. Geo-positioning accuracy analysis for domestic high-resolution satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 100-107.
URL:     OR

[1] 李德仁.我国第一颗民用三线阵立体测图卫星——资源三号测绘卫星[J].测绘学报,2012,41(3):317-322. Li D R.China's first civilian three-line-array stereo mapping satellite:ZY-3[J].Acta Geodaetica et Cartographica Sinica,2012,41(3):317-322.
[2] Tao C V,Hu Y,Jiang W.Photogrammetric exploitation of IKONOS imagery for mapping applications[J].International Journal of Remote Sensing,2004,25(14):2833-2853.
[3] Habib A,Shin S W,Kim S K,et al.Comprehensive analysis of sensor modeling alternatives for high resolution imaging satellites[J].Photogrammetric Engineering and Remote Sensing,2007,73(11):1241-1251.
[4] 刘军,张永生,王冬红.基于RPC模型的高分辨率卫星影像精确定位[J].测绘学报,2006,35(1):30-34. Liu J,Zhang Y S,Wang D H.Precise positioning of high spatial resolution satellite images based on RPC models[J].Acta Geodaetica et Cartographica Sinica,2006,35(1):30-34.
[5] Grodecki J,Dial G.Block adjustment of high-resolution satellite images described by rational polynomials[J].Photogrammetric Engineering and Remote Sensing,2003,69(1):59-68.
[6] 袁修孝,汪韬阳.CBERS-02B卫星遥感影像的区域网平差[J].遥感学报,2012,16(2):310-324. Yuan X X,Wang T Y.Block adjustment for CBERS-02B satellite images[J].Journal of Remote Sensing,2012,16(2):310-324.
[7] Tong X H,Hong Z H,Liu S J,et al.Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery:A case study of the May 2008 Wenchuan earthquake[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68:13-27.
[8] Xiong Z,Zhang Y.A generic method for RPC refinement using ground control information[J].Photogrammetric Engineering and Remote Sensing,2009,75(9):1083-1092.
[9] 张过,潘红播,唐新明,等.资源三号测绘卫星长条带产品区域网平差[J].武汉大学学报:信息科学版,2014,39(9):1098-1102. Zhang G,Pan H B,Tang X M,et al.Block adjustment of ZY-3 long strip scenes[J].Geomatics and Information Science of Wuhan University,2014,39(9):1098-1102.
[10] 韩杰,顾行发,余涛,等.基于RFM的ZY-3卫星影像区域网平差研究[J].国土资源遥感,2013,25(4):64-71.doi:10.6046/gtzyyg.2013.04.11. Han J,Gu X F,Yu T,et al.Block adjustment for ZY-3 satellite images based on RFM[J].Remote Sensing for Land and Resources,2013,25(4):64-71.doi:10.6046/gtzyyg.2013.04.11.
[11] 代强玲,张宏伟,林宗坚.稀少控制的多源卫星影像区域网平差研究[J].测绘科学,2014,39(9):34-38,82. Dai Q L,Zhang H W,Lin Z J.Study on multi-satellite images block adjustment of scarce control[J].Science of Surveying and Mapping,2014,39(9):34-38,82.
[12] 张过,厉芳婷,江万寿,等.推扫式光学卫星影像系统几何校正产品的3维几何模型及定向算法研究[J].测绘学报,2010,39(1):34-38. Zhang G,Li F T,Jiang W S,et al.Study of three-dimensional geometric model and orientation algorithms for systemic geometric correction product of push-broom optical satellite image[J].Acta Geodaetica et Cartographica Sinica,2010,39(1):34-38.
[13] 袁修孝,余翔.高分辨率卫星遥感影像姿态角系统误差检校[J].测绘学报,2012,41(3):385-392. Yuan X X,Yu X.Calibration of angular systematic errors for high resolution satellite imagery[J].Acta Geodaetica et Cartographica Sinica,2012,41(3):385-392.
[14] Li R X,Zhou F,Xiu X T,et al.Integration of IKONOS and QuickBird imagery for geopositioning accuracy analysis[J].Photogrammetric Engineering and Remote Sensing,2007,73(9):1067-1074.

[1] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[2] Peiting LI, Qingzhan ZHAO, Wenzhong TIAN, Yongjian MA. Point cloud simplification method combining K-means++ clustering with UAV LiDAR point cloud normal vectors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 103-110.
[3] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[4] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[5] Ying LI, Haiyang YU, Yan WANG, Jianpeng WU, Li YANG. Classification of urban vegetation based on unmanned aerial vehicle reconstruction point cloud and image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 149-155.
[6] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[7] Zhongdi YU, Hui LI, Fang BA, Zhaoyang WANG. 3D city model construction based on a consumer-grade UAV[J]. Remote Sensing for Land & Resources, 2018, 30(2): 67-72.
[8] Xue HE, Zhengrong ZOU, Yunsheng ZHANG, Shouji DU, Te ZHENG. Object-oriented classification method for oblique photogrammetric point clouds[J]. Remote Sensing for Land & Resources, 2018, 30(2): 87-92.
[9] LI Yunfan, TAN Debao, LIU Rui, WU Jianwei. An improved RANSAC algorithm for building point clouds segmentation in consideration of roof structure[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 20-25.
[10] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[11] WANG Xudong, DUAN Fuzhou, QU Xinyuan, LI Dan, YU Panfeng. Building extraction based on UAV imagery data with the synergistic use of objected-based method and SVM classifier[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 97-103.
[12] ZHOU Hanghang, ZOU Zhengrong, ZHANG Yunsheng, ZHENG Te. Facade extraction from oblique point cloud considering geometrical and color information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 43-48.
[13] LI Lelin, JIANG Wanshou, GUO Chengfang. Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 29-35.
[14] ZHENG Shasha, DONG Pinliang, WANG Cheng, XI Xiaohuan, LYU Yibin. Lacunarity analysis of LiDAR point clouds for tree crowns[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 103-110.
[15] XIAO Chunlei, GUO Zhaocheng, ZHANG Zonggui, LI Qian, SHANG Boxuan, WU Fang. Extraction and analysis of ground fissures from airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 111-118.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech