Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 76-82     DOI: 10.6046/gtzyyg.2018.03.11
|
Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images
Ye LYU, Xiangyun HU
School of Remote Sensing and Engineering, Wuhan University, Wuhan 430072, China
Download: PDF(4312 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing technology has been the most effective and efficient method for extracting information from the earth surface. Roads in the high spatial resolution remote sensing images are areas with very complex road features. None road objects, such as cars, lanes and pedestrians, will change road appearance greatly, which makes road extraction difficult. The authors take advantage of Gaussian mixture model and Markov random field, which adapts to interference, to evaluate foreground and background models and label their pixels. As roads go through the remote sensing images, the areas far from the roads are useless for road extraction, and hence local incremental segmentation method takes effect. The experiments show that methods used in this paper are fairly effective.

Keywords Markov random field      incremental segmentation      road extraction      remote sensing images      high spatial resolution     
:  TP753  
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ye LYU
Xiangyun HU
Cite this article:   
Ye LYU,Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.11     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/76
Fig.1  Validate area of road extraction
Fig.2  Sketch map of road incremental extraction principal
Fig.3  Road incremental extraction process
Fig.4  Initial setting
Fig.5  Incremental segmentation process
Fig.6  Example of incremental road extraction from rural area and highway in panchromatic image
Fig.7  Evaluation of experimental results
道路类型 精确率 召回率 F-Beta测度
全色影像公路 0.92 0.74 0.87
多光谱影像公路 0.84 0.95 0.87
全色影像乡村道路 0.71 0.90 0.75
Tab.1  Evaluation of road extraction result
Fig.8  Road extraction result from a more complex scene
[1] Lyu Y, Wang G F, Hu X Y.Machine learning based road detection from high resolution imagery[J].ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B3:891-898.
doi: 10.5194/isprs-archives-XLI-B3-891-2016 url: http://adsabs.harvard.edu/abs/2016ISPAr41B3..891L
[2] Vosselman G, Knecht J D . Road Tracing by Profile Matching and Kaiman Filtering[M] //Gruen A,Kuebler O,Agouris P.Automatic Extraction of Man-Made Objects from Aerial and Space Images.Monte Verità:Birkhäuser Basel, 1995: 265-274.
[3] Singh P P, Garg R D . Automatic road extraction from high resolution satellite image using adaptive global thresholding and morphological operations[J]. Journal of the Indian Society of Remote Sensing, 2013,41(3):631-640.
doi: 10.1007/s12524-012-0241-4 url: http://link.springer.com/10.1007/s12524-012-0241-4
[4] Cheng J H, Guan Y F, Ku X S, et al. Semi-automatic road centerline extraction in high-resolution SAR images based on circular template matching [C]//Proceedings of 2011 International Conference on Electric Information and Control Engineering.Wuhan,China:IEEE, 2011: 1688-1691.
[5] Hu Y, Zu K J. Road extraction from remote sensing imagery based on road tracking and ribbon snake [C]//Proceedings of 2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering.Shenzhen,China:IEEE, 2009: 201-204.
[6] Sujatha C, Selvathi D . Connected component-based technique for automatic extraction of road centerline in high resolution satellite images[J]. EURASIP Journal on Image and Video Processing, 2015,2015(1):8.
doi: 10.1186/s13640-015-0062-9 url: https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-015-0062-9
[7] Song M J, Civco D . Road extraction using SVM and image segmentation[J]. Photogrammetric Engineering and Remote Sensing, 2004,70(12):1365-1371.
doi: 10.14358/PERS.70.12.1365 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=70&issue=12&spage=1365
[8] Sirmacek B, Unsalan C. Road network extraction using edge detection and spatial voting [C]//Proceedings of the 20th International Conference on Pattern Recognition.Istanbul,Turkey:IEEE, 2010: 3113-3116.
[9] Bicego M, Dalfini S, Vernazza G , et al.Automatic road extraction from aerial images by probabilistic contour tracking[C]//Proceedings of 2003 International Conference on Image Processing. Barcelona,Spain:IEEE,2003:III-585-8.
[10] Gamba P, Dell’Acqua F,Lisini G.Improving urban road extraction in high-resolution images exploiting directional filtering,perceptual grouping,and simple topological concepts[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(3):387-391.
doi: 10.1109/LGRS.2006.873875 url: http://ieeexplore.ieee.org/document/1658011/
[11] Wang Y Q, Tian Y, Tai X Q, et al. Extraction of main urban roads from high resolution satellite images by machine learning [C]//Proceedings of the 7th Asian Conference on Computer Vision.Hyderabad,India:Springer, 2006: 236-245.
[12] Chen Y H, Su W, Li J , et al. Hierarchical object oriented classification using very high resolution imagery and LiDAR data over urban areas[J]. Advances in Space Research, 2009,43(7):1101-1110.
doi: 10.1016/j.asr.2008.11.008 url: http://linkinghub.elsevier.com/retrieve/pii/S0273117708005735
[13] Hinz S, Baumgartner A, Steger C , et al. Road extraction in rural and urban areas[J]. Semantic Modeling for the Acquisition of Topographic Information from Images and Maps, 1999,4:133-153.
url: http://ci.nii.ac.jp/naid/10015229207
[14] Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images [C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Vancouver,BC,Canada:IEEE, 2001,1:105-112.
[15] Ruzon M A, Tomasi C. Alpha estimation in natural images [C]//Proceedings of 2000 IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head Island,SC,USA:IEEE, 2000,1:18-25.
[16] Kernighan B W, Lin S . An efficient heuristic procedure for partitioning graphs[J]. The Bell System Technical Journal, 1970,49(2):291-307.
doi: 10.1002/bltj.1970.49.issue-2 url: http://doi.wiley.com/10.1002/bltj.1970.49.issue-2
[17] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection [C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition.Miami,FL,USA:IEEE, 2009: 1597-1604.
[18] Cheng M M, Mitra N J, Huang X L , et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(3):569-582.
doi: 10.1109/TPAMI.2014.2345401 pmid: 26353262 url: http://ieeexplore.ieee.org/document/6871397/
[19] Tang M, Gorelick L, Veksler O, et al. GrabCut in one cut [C]//Proceedings of 2003 IEEE International Conference on Computer Vision.Sydney,NSW,Australia:IEEE, 2013: 1769-1776.
[20] Cheng M M, Prisacariu V A, Zheng S , et al. DenseCut:densely connected CRFs for realtime grabCut[J]. Computer Graphics Forum, 2015,34(7):193-201.
doi: 10.1111/cgf.12758 url: http://dl.acm.org/citation.cfm?id=2851399
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[3] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[4] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[5] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[6] Bai, Yuying, Chengling, Yanru, Shihu. Different remote sensing image matching methods based on multiple constraints[J]. Remote Sensing for Land & Resources, 2020, 32(3): 49-54.
[7] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[8] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[9] Bo YU, Junjun ZHANG, Chungeng LI, Jubai AN. Automated extraction of roads from mobile laser scanning point clouds by image semantic segmentation[J]. Remote Sensing for Land & Resources, 2020, 32(1): 66-74.
[10] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[11] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
[12] Xianlei FAN, Hongbo YAN, Ying QU. Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 123-131.
[13] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[14] Haicheng QU, Yue GUO, Yuanyuan WANG. Hyperspectral image classification based on dominant sets clustering and Markov random fields[J]. Remote Sensing for Land & Resources, 2019, 31(2): 24-31.
[15] Li XUE, Shuwen YANG, Jijing MA, Xin JIA, Ruliu YAN. Automatic expansion extraction algorithm of remote sensing images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 42-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech