Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (3) : 12-18     DOI: 10.6046/gtzyyg.2016.03.03
|
An improved SVM algorithm for high spatial resolution remote sensing image classification
DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili
Base of the State Key Laboratory of Urban Environmental Process and Digital Modelling, Capital Normal University, Beijing 100048, China
Download: PDF(5066 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Support vector machine (SVM) algorithm has been widely used for remote sensing image classification. For high spatial resolution image classification, traditional SVM algorithm usually leads to low efficiency due to large quantities of high dimensional sample data. This paper presents a simple improved SVM algorithm with the purpose of improving both efficiency and accuracy of classification models. The algorithm first uses PCA to reduce the dimension of sample features. The grid-based method is used to search for optimal parameters for SVM classification of PCA-based samples. Then new range around the PCA-optimal parameters is set up and used for optimal parameter search based on the original sample data. Finally, SVM with the optimal parameters is used to train the original sample data and classify the image. The new algorithm was evaluated by two classification experiments based on WorldView2 images including urban land cover land use classification and urban tree classification. Compared with the traditional SVM and SVM merely based on PCA data, the results show that the improved SVM algorithm could quickly and efficiently find the optimum parameters of the SVM classifier and achieves higher classification accuracy.

Keywords IRS-P6      GIS      remote sensing      Tianjun County      plateau landform      information extraction     
:  TP79  
Issue Date: 01 July 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Bing
CUI Ximin
WEI Rui
SONG Baoping
ZHAO Xuyang
Cite this article:   
ZHANG Bing,CUI Ximin,WEI Rui, et al. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.03.03     OR     https://www.gtzyyg.com/EN/Y2016/V28/I3/12

[1] 张伐伐,李卫忠,卢柳叶,等.SPOT5遥感影像土地利用信息提取方法研究[J].西北农林科技大学学报:自然科学版,2011,39(6):143-147. Zhang F F,Li W Z,Lu L Y,et al.Study on extraction methods of land utilization information based on SPOT5[J].Journal of Northwest A and F University:Natural Science Edition,2011,39(6):143-147.
[2] 盛佳,洪中华,张云,等.基于TerraSAR-X影像的格陵兰岛海岸水边线提取[J].极地研究,2014,26(4):418-424. Sheng J,Hong Z H,Zhang Y,et al.Extraction of the greenland coastline based on TerraSAR-X imagery[J].Chinese Journal of Polar Research,2014,26(4):418-424.
[3] 张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J]. 遥感学报,2006,10(1):49-57. Zhang J S,He C Y,Pan Y Z,et al.The high spatial resolution RS image classification based on SVM method with the multi-source data[J].Journal of Remote Sensing,2006,10(1):49-57.
[4] 俞晓冬,周栾爱.基于改进SVM模型的电能质量扰动分类[J].电力系统保护与控制,2010,38(3):15-19. Yu X D,Zhou L A.Classification method of power quality disturbances based on improved SVM model[J].Power System Protection and Control,2010,38(3):15-19.
[5] 张磊,邵振峰.改进的OIF和SVM结合的高光谱遥感影像分类[J].测绘科学,2014,39(11):114-117,66. Zhang L,Shao Z F.Hyperspectral remote sensing image classification based on improved OIF and SVM algorithm[J].Science of Surveying and Mapping,2014,39(11):114-117,66.
[6] 韦春桃,王宁,张利恒,等.基于纹理特征的高分辨率遥感影像分类方法[J].桂林理工大学学报,2013,33(1):80-85. Wei C T,Wang N,Zhang L H,et al.Remote sensing image classification based on texture features[J].Journal of Guilin University of Technology,2013,33(1):80-85.
[7] 陈杰,邓敏,肖鹏峰,等.结合支持向量机与粒度计算的高分辨率遥感影像面向对象分类[J]. 测绘学报,2011,40(2):135-141,147. Chen J,Deng M,Xiao P F,et al.Object-oriented classification of high resolution imagery combining support vector machine with granular computing[J].Acta Geodaetica et Cartographica Sinica,2011,40(2):135-141,147.
[8] 萧嵘,王继成,孙正兴,等.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. Xiao R,Wang J C,Sun Z X,et al.An incremental SVM learning algorithm α-ISVM[J].Journal of Software, 2001,12(12):1818-1824.
[9] 付元元,任东.支持向量机中核函数及其参数选择研究[J].科技创新导报,2010(9):6-7. Fu Y Y,Ren D.Kernel function and parameter selection of support vector machine[J].Science and Technology Innovation Herald,2010(9):6-7.
[10] Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[R].Taipei,Taiwan:Department of Computer Science and Information Engineering,University of National Taiwan,2003.
[11] 奉国和.SVM分类核函数及参数选择比较[J].计算机工程与应用,2011,47(3):123-124,128. Feng G H.Parameter optimizing for support vector machines classification[J].Computer Engineering and Applications,2011,47(3):123-124,128.
[12] 吴渝,向浩宇,刘群.一种基于网格的最近邻SVM新算法[J].重庆邮电大学学报:自然科学版,2008,20(6):706-709. Wu Y,Xiang H Y,Liu Q.A new NN-SVM algorithm based on gird[J].Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition,2008,20(6):706-709.
[13] 李京华,张聪颖,倪宁.基于参数优化的支持向量机战场多目标声识别[J].探测与控制学报,2010,32(1):1-5. Li J H,Zhang C Y,Ni N.Multi-target acoustic identification in battlefield based on SVM of parameter optimization[J].Journal of Detection and Control,2010,32(1):1-5.
[14] LaValle S M,Branicky M S,Lindemann S R.On the relationship between classical grid search and probabilistic roadmaps[J].The International Journal of Robotics Research,2004,23(7/8):673-692.
[15] Liang Y C,Lee H P,Lim S P,et al.Proper orthogonal decomposition and its applications-Part I:Theory[J].Journal of Sound and Vibration,2002,252(3):527-544.
[16] Zhao G,Maclean A L.A comparison of canonical discriminant analysis and principal component analysis for spectral transformation[J].PE and RS,Photogrammetric Engineering and Remote Sensing,2000,66(7):841-847.
[17] Metternicht G I,Zinck J A.Remote sensing of soil salinity:Potentials and constraints[J].Remote Sensing of Environment,2003,85(1):1-20.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[3] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[4] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[5] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[6] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[7] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[8] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[9] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[10] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[11] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[14] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[15] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech