Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (4) : 48-52     DOI: 10.6046/gtzyyg.2013.04.08
Technology and Methodology |
New vegetation index for extracting vegetation information from ALOS image
GAO Shanshan1,2, CHEN Renxi1,2
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China;
2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
Download: PDF(1325 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In view of the phenomenon that the existing vegetation indexes are not suitable for vegetation extraction of ALOS image, this paper, starting with an analysis of the spectral characteristics of the vegetation, puts forward a new vegetation index(vegetation sample-based vegetation index,VSVI) based on the analysis of vegetation samples and proves that this vegetation index is only associated with the spectral information of vegetation but not related to the soil background, thus having a certain capability of eliminating the soil background image with mathematical derivation. The vegetation of ALOS image is extracted by the vegetation index with the method of threshold segmentation and compared with the vegetation indexes(DVI, RVI, NDVI and SAVI). The results show that the vegetation index is capable of overcoming the shortcomings of other vegetation indexes, and the vegetation extraction accuracy can be raised by 21.7%, 27.5%, 14% and 9.5% respectively.

Keywords Pearl River Delta      remote sensing survey      coastline      evolution analysis     
:  TP75  
Issue Date: 21 October 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Junfeng
WANG Gengming
ZHANG Jinlan
HUANG Tielan
Cite this article:   
ZHU Junfeng,WANG Gengming,ZHANG Jinlan, et al. New vegetation index for extracting vegetation information from ALOS image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 48-52.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.04.08     OR     https://www.gtzyyg.com/EN/Y2013/V25/I4/48
[1] 王树根.日本ALOS卫星简介[J].测绘信息与工程,2000(1):45-46. Wang S G.The profile of Japans ALOS satellite[J].Journal of Geomatics,2000(1):45-46.
[2] 熊金国,王世新,周艺.不同指数模型提取ALOS AVNIR-2影像中水体的敏感性和精度分析[J].国土资源遥感,2010,22(4):46-50. Xiong J G,Wang S X,Zhou Y.A sensitivity analysis and accuracy assessment of different water extraction index models based on ALOS AVNIR - 2 data[J].Remote Sensing for Land and Resources,2010,22(4):46-50.
[3] 何宇华,谢俊奇,刘顺喜.ALOS卫星遥感数据影像特征分析及应用精度评价[J].地理与地理信息科学,2008,24(2):23-26. He Y H,Xie J Q,Liu S X.Image characteristics analysis and application accuracy assessment of ALOS data[J].Geography and Geo-Information Science,2008,24(2):23-26.
[4] 邵晓敏,刘勇.基于纹理的乌兰布和沙漠地区植被信息提取[J].遥感技术与应用,2010,25(5):687-693. Shao X M,Liu Y.Deriving vegetation information in Ulan Buh desert based on texture[J].Remote Sensing Technology and Application,2010,25(5):687-693.
[5] 李玲,王红,刘庆生,等.基于纹理特征和支持向量机的ALOS图像土地覆被分类[J].国土资源遥感,2011,23(4):58-63. Li L,Wang H,Liu Q S,et al.Land cover classification using ALOS image based on textural features and support vector machine[J].Remote Sensing for Land and Resources,2011,23(4):58-63.
[6] 伍蓝.基于ALOS等数据的盐城湿地植被分类及土地覆盖时 空变化研究[D].南京:南京师范大学,2008. Wu L.Fine classification of vegetation and land-cover change analysis of wetlands based on ALOS and other image data in Yancheng[D].Nanjing:Nanjing Normal University,2008.
[7] 黄铁栏,苏华,王云鹏.NDVI/NDWI/DEM决策树方法在东 莞ALOS影像土地利用分类中的应用[J].华南师范大学学报:自然科学版,2012,44(1):134-139. Huang T L,Su H,Wang Y P.Decision tree method on NDVI/NDWI/DEM for land use classification of ALOS image in Dongguan City[J].Journal of South China Normal University: Natural Science Edition,2012,44(1):134-139.
[8] 徐爽,沈润平,杨晓月.利用不同植被指数估算植被覆盖度的比较研究[J].国土资源遥感,2012,24(4):95-100. Xu S,Shen R P,Yang X Y.A comparative study of different vegetation indices for estimating vegetation coverage based on the dimidiate pixel model[J].Remote Sensing for Land and Resources,2012,24(4):95-100.
[9] Richardson A J,Wiegand C L.Distinguishing vegetation from soil background information[J].Photogrammetric Engineering and Remote Sensing,1977,43(12):1541-1552.
[10] Jordan C F.Derivation of leaf area index from quality of light on the foresr floor[J].Ecology,1969,50(4):663-666.
[11] Rouse J W,Haas R H,Schell J A,et al.Monitoring vegetation systems in the great plains with ERTS[C]//Proceedings of third earth resources technology satellite-1 symposium,Greenbelt NASASP - 351,1974:310-317.
[12] Huete A R.A soil-adjusted vegetation index(SAVI)[J].Remote Sensing of Environment,1988,25(3):295- 309.
[13] Pinty B,Verstraete M M.GEMI:A non-linear index to monitor global vegetation from satellites[J].Vegetation,1992,101(1):15-20.
[14] 唐世浩,朱启疆,王锦地,等.三波段梯度差植被指数的理论基础及其应用[J].中国科学:D缉,2003,33(11):1094-1102. Tang S H,Zhu Q J,Wang J D,et al.Theoretical basis of the tri-band gradient difference vegetation index and its application[J].Science in China:Series D,2003,33(11):1094-1102.
[1] CHEN Chao, CHEN Huixin, CHEN Dong, ZHANG Zili, ZHANG Xufeng, ZHUANG Yue, CHU Yanli, CHEN Jianyu, ZHENG Hong. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land & Resources, 2021, 33(2): 141-152.
[2] HAO Guzhuang, GAN Fuping, YAN Baikun, LI Xianqing, HU Huidong. Remote sensing survey and driving force analysis of area change of Hongyashan Reservoir in the past twenty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 192-201.
[3] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[4] Kun LUO, Bo DING, Genyuan LONG. Analysis of Ningyuan Estuary coastline transition based on the multi-resource remote sensing image[J]. Remote Sensing for Land & Resources, 2018, 30(4): 187-192.
[5] Yuling ZHAO. Remote sensing survey and proposal for protection of the natural resources in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Remote Sensing for Land & Resources, 2018, 30(4): 139-147.
[6] ZHAO Yuling. Remote sensing survey and proposal for protection of the shoreline and the mangrove wetland in Guangdong Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 114-120.
[7] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
[8] WANG Jining, MENG Yonghui, ZHANG Lixia. Remote sensing monitoring and change analysis of Yellow River Estuary coastline in the past 42 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 188-193.
[9] YANG Changkun, LIU Zhaoqin, WANG Chongchang, LIU Bin, PENG Man. Spatial change analysis of the coastal zone of Liaodong Bay from 2001 to 2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 150-157.
[10] LIU Pengcheng. Feature extraction of coastline contour based on level set theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 75-79.
[11] GUO Zhaocheng, TONG Liqiang, ZHENG Xiongwei, QI Jianwei, WANG Jianchao. Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 99-105.
[12] ZHANG Xukai, ZHANG Xia, YANG Banghui, ZHUANG Zhi, SHANG Kun. Coastline extraction using remote sensing based on coastal type and tidal correction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 91-97.
[13] LUAN Zhuoran, ZHOU Zhiyong, LU Li, ZHANG Zhike, LI Bin, YU Qian. Remote sensing survey of brick clay exploitation situation and eco-environment of central Hebei (Jizhong) plain[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 143-146.
[14] ZHU Junfeng, WANG Gengming, ZHANG Jinlan, HUANG Tielan. Remote sensing investigation and recent evolution analysis of Pearl River delta coastline[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 130-137.
[15] ZHU Changming, ZHANG Xin, LUO Jiancheng, LI Wanqing, YANG Jiwei. Automatic extraction of coastline by remote sensing technology based on SVM and auto-selection of training samples[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech