Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 196-203     DOI: 10.6046/gtzyyg.2020.02.25
|
Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station
Haigang SHI1, Chunli LIANG1(), Jianyong ZHANG1,2, Chunlei ZHANG1, Xu CHENG1
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang, Shijiazhuang 050002, China
2. Donghua Polytechnic University,Nanchang 330013, China
Download: PDF(8313 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the infrared data of the Landsat8 in similar tides and different time spans in the sea region near Tianwan nuclear plant,Lianyungang City,Jiangsu Province, on November 15,2013 and February 27,2017,the authors used remote sensing technology to study the thermal discharge of nuclear power plant and change along the coastal line. The relationship between the thermal discharge and change in the coastal line was analyzed. The results show that the construction of peripheral engineering of Tianwan nuclear power plant dramatically changed the coastline,which affected the size and distribution of the thermal discharge. Remote sensing technology can detect the change of coastal line near the nuclear power plant and its effect on thermal discharge distribution. It is important to monitor the change of coastline near the nuclear power plant for sea temperature monitoring.

Keywords coastline changes      Landsat8      thermal discharge of nuclear power plant      temperature retrieving      remote sensing monitoring     
:  TP79  
Corresponding Authors: Chunli LIANG     E-mail: 1270610414@qq.com
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haigang SHI
Chunli LIANG
Jianyong ZHANG
Chunlei ZHANG
Xu CHENG
Cite this article:   
Haigang SHI,Chunli LIANG,Jianyong ZHANG, et al. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.25     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/196
Fig.1  Interpretation results of the coastline around Tianwan Nuclear Power Station
Fig.2  Distribution of thermal infrared temperature
Fig.3  Distribution of sea surface temperature on November 15,2013
Fig.4  Linear fitting and residual point map of measured values and inverted SST values at sea on November 15,2013
Fig.5  Temperature distribution map of MODIS thermal infrared on November 15,2013
Fig.6  Diagram of tidal state changes on November 15,2013
序号 Landsat8
反演结果
MODIS
反演结果
偏差
1 14.69 14.41 0.28
2 14.52 14.62 -0.10
3 14.76 14.87 -0.12
4 14.64 14.70 -0.05
5 14.55 14.55 0.00
6 14.63 14.46 0.17
7 14.37 14.56 -0.19
8 14.36 14.60 -0.24
9 14.40 14.63 -0.23
10 14.47 14.63 -0.16
11 15.15 15.79 -0.64
12 14.50 14.81 -0.31
13 15.18 14.60 0.58
14 14.87 14.78 0.09
15 14.37 14.43 -0.06
16 16.33 15.20 1.13
17 15.06 16.11 -1.05
18 14.40 14.70 -0.30
19 14.23 14.45 -0.22
20 14.27 14.33 -0.06
21 14.30 14.39 -0.09
22 14.30 14.45 -0.15
23 15.25 14.68 0.57
Tab.1  Comparison of Landsat 8 inversion results with MODIS inversion results (℃)
Fig.7  Fitting of Landsat 8 and MODIS Inversion Results on November 15,2013
Fig.8  Heat impact coding chart
Fig.9  Contrast chart of heat affected area at different time phases
[1] 於凡, 张永兴. 滨海核电站温排水对海洋生态系统影响的研究[J].辐射防护通讯, 2008(1):1-7.
[1] Yu F, Zhang Y X. The review on the effects of thermal effluent from nuclear plants on the marine ecosystem[J].Radiation protection communication, 2008(1):1-7.
[2] 刘永叶, 陈晓秋. 核电厂温排水热影响研究的建议[J]. 辐射防护通讯, 2011,31(6):20-23.
[2] Liu Y Y, Chen X Q. Suggestion of the study on thermal impact of thermal discharge from NPPs[J]. Radiation protection communication, 2011,31(6):20-23.
[3] 陈晓秋, 商照荣. 核电厂环境影响审查中的温排水问题[J].核安全, 2007(2):69-74.
[3] Chen X Q, Shang Z R. The issue of thermal discharge in reviewing the environmental impacts report for nuclear power plant[J].Nuclear Saftey, 2007(2):46-50.
[4] 姜晟, 李俊龙, 李旭文. 核电站温排水遥感监测方法研究——以田湾核电站为例[J]. 中国环境监测, 2013,29(6):46-50.
[4] Jiang S, Li J L, Li X W. A research on the remote sensing monitoring method with the thermal discharge of Tian-Wan nuclear power station[J]. Environmental Monitoring in China, 2013,29(6):46-50.
[5] 熊盛青. 国土资源遥感技术应用现状与发展趋势[J]. 国土资源遥感, 2002,51(1):1-5.doi: 10.6046/gtzyyg.2002.01.01.
[5] S Q.The application status and development trend of remote sensing technology in national land and resources[J].Remote Sensing for Land and Resources,2002,51(1):1-5.doi: 10.6046/gtzyyg.2002.01.01.
[6] 姚沛林. 滨海核电厂温排水的监测与实践[J]. 红外, 2013,34(11):43-48.
[6] Yao P L. Monitoring of warm water discharged from coastal nuclear power station[J]. Infrared, 2013,34(11):43-48.
[7] 王冠琳, 熊学军. 田湾海域温排水分布及变化规律分析[J]. 海洋科学进展, 2013,31(1):46-50.
[7] Wang G L, Xiong X J. Distribution and variation of warm water discharge in the coasalt area of Tianwan[J]. Advances in Marine Science, 2013,31(1):46-50.
[8] 孙恋君, 王凤英, 朱晓翔. 田湾核电站温排水环境影响遥感调查[J]. 中国辐射卫生, 2011,20(3):330-332.
[8] Sun L J, Wang F Y, Zhu X X. Remote sensing investigation on environmental impact of thermal discharge of Tianwan nuclear power station[J]. Chinese Journal of Radiological Health, 2011,20(3):330-332.
[9] 山东海阳核电项目3、4号机组温排水、液态流出物数值模拟补充计算分析报告[R]. 中国水利水电科学研究院, 2015,12:15-57.
[9] Supplementary calculation and analysis report on numerical simulation of thermal discharge and liquid effluent for No.3 and No.4 nuclear power units of Haiyang nuclear power project in Shandong Province[R]. China Institute of Water Resources and Hydropower Research, 2015,12:15-57.
[10] 初庆伟, 张洪群, 吴业炜, 等, Landsat8卫星数据应用探讨[J]. 遥感信息, 2013,28(4):110-114.
[10] Chu Q W, Zhang H Q, Wu Y W, et al. Application research of Landsat8[J]. Remote Sensing Information, 2013,28(4):110-114.
[11] 陈瀚阅, 朱利, 李家国, 等. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018,30(1):45-53.doi: 10.6046/gtzyyg.2008.01.07.
[11] Chen H Y, Zhu L, Li J G, et al. A Comparison of two mono-window algorithm for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Journal of Geomatics, 2018,30(1):45-53.doi: 10.6046/gtzyyg.2008.01.07.
[12] Rozenstein. Derivation of land surface temperature for Landsat8 TIRS using a split window algorithm[J]. Sensors, 2014,14:5768-5780.
[13] Barsi J A, Barker J L, Schott J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[J]. IGARSS03, 2003,5:3014-3016.
[14] Barsi J A, Schott J R, Palluconi F D, et al.Validation of a web-based atmospheric correction tool for single thermal band instruments[Z]. Earth Observing Systems X, 2005,5882:1-6.
[15] 刘玉洁, 杨忠东, 等. MODIS遥感信息处理原理与算法[M]. 北京: 科学出版社, 2001: 287-297.
[15] Liu Y J, Yang Z D, et al. Processing principle and algorithm of MODIS remote sensing information[M]. Beijing: Science Press, 2001: 287-297.
[16] Otis B B, Peter J M,et al.Modis infrared sea surface temperature algorithm theoretical basis document[EB/OL].[2004-5-6]. http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD_NUMBER=28.
url: http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD_NUMBER=28
[17] 刘恒. 多传感器卫星海表温度数据的验证与交叉比较[D]. 青岛:中国海洋大学, 2008: 1-12.
[17] Liu H. Verification and cross-comparison of multi-sensor satellite sea surface temperature data[D]. Qingdao:China Ocean University, 2008: 1-12.
[18] 田国良. 热红外遥感[M]. 北京: 电子工业出版社, 2006: 7-10.
[18] Tian G L. Thermal infrared remote sensing[M]. Beijing: Electronic Industry Press, 2006: 7-10.
[1] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[2] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[3] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[4] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[5] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[6] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[7] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[8] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[9] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[10] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[11] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[12] Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
[13] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[14] Wenya LIU, Ruru DENG, Yeheng LIANG, Yi WU, Yongming LIU. Retrieval of chlorophyll-a concentration in Chaohu based on radiative transfer model[J]. Remote Sensing for Land & Resources, 2019, 31(2): 102-110.
[15] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech