Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (3) : 59-64     DOI: 10.6046/gtzyyg.2015.03.11
Technology and Methodology |
Urban area detection based on Gabor filtering and density of local feature points
LI Xianghui, CHEN Yixiang, WANG Haibin, ZHANG Enbing, QIN Kun
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Download: PDF(2825 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  To tackle the problem of urban area detection using high-resolution remote sensing images, this paper proposes a method based on Gabor filtering and density of local feature points by analyzing the residential area texture of high resolution image. For obtaining the amplitude information in multiple directions, the Gabor filtering was used firstly, and then the image feature points were extracted by subsequent processing of amplitude images. By computing the density of local feature points, the initial residential areas could be obtained. With further mathematical morphology transformation of the areas, the results were optimized ultimately. In the experiments, two WorldView2 data were used to validate the different methods. A comparative analysis with other methods shows that the method proposed in this paper has higher extraction accuracy and computational efficiency for urban area detection.
Keywords Changsha-Zhuzhou-Xiangtan area      construction land expansion      buffer area      spatial trends      spatial-temporal features     
:  TP751.1  
Issue Date: 23 July 2015
E-mail this article
E-mail Alert
Articles by authors
YI Fengjia
LI Rendong
CHANG Bianrong
QIU Juan
Cite this article:   
YI Fengjia,LI Rendong,CHANG Bianrong, et al. Urban area detection based on Gabor filtering and density of local feature points[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 59-64.
URL:     OR
[1] 王琰,舒宁,龚龑,等.基于类别光谱变化规律的土地利用变化检测[J].国土资源遥感,2012,24(3):92-96.doi:10.6046/gtzyyg.2012.03.17. Wang Y,Shu N,Gong Y,et al.Land use change detection based on class spectral change rule[J].Remote Sensing for Land and Resources,2012,24(3):92-96.doi:10.6046/gtzyyg.2012.03.17.
[2] 陈征,胡德勇,曾文华,等.基于TM图像和夜间灯光数据的区域城镇扩张监测——以浙江省为例[J].国土资源遥感,2014,26(1):83-89.doi:10.6046/gtzyyg.2014.01.15. Chen Z,Hu D Y,Zeng W H,et al.TM image and night-time light data to monitoring regional urban expansion:A case study of Zhejiang Province[J].Remote Sensing for Land and Resources,2014,26(1):83-89.doi:10.6046/gtzyyg.2014.01.15.
[3] Benediktsson J A,Pesaresi M,Amason K.Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):1940-1949.
[4] Zhong P,Wang R S.A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3978-3988.
[5] 张春晓,候伟,刘翔,等.基于面向对象和影像认知的遥感影像分类方法——以都江堰向峨乡区域为例[J].测绘通报,2010(4):11-14. Zhang C X,Hou W,Liu X,et al.Remote sensing image classification based on object-oriented and image cognition:A case study in Xiang'e,Dujiangyan[J].Bulletin of Surveying and Mapping,2010(4):11-14.
[6] 潘励,张志华,张剑清.融合区域分割和边缘信息的居民地提取方法[J].武汉大学学报:信息科学版,2006,31(8):671-674. Pan L,Zhang Z H,Zhang J Q.Residential areas recognition by fusing region data and edge features[J].Geomatics and Information Science of Wuhan University,2006,31(8):671-674.
[7] Hu X Y,Shen J J,Shan J,et al.Local edge distributions for detection of salient structure textures and objects[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):466-470.
[8] Sirmacek B,Unsalan C.Urban-area and building detection using SIFT keypoints and graph theory[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(4):1156-1167.
[9] Sirmacek B,Unsalan C.Urban area detection using local feature points and spatial voting[J].IEEE Geoscience and Remote Sensing Letters,2010,7(1):146-150.
[10] 陈洪,陶超,邹峥嵘,等.一种新的高分辨率遥感影像城区提取方法[J].武汉大学学报:信息科学版,2013,38(9):1063-1067. Chen H,Tao C,Zou Z R,et al.Automatic urban area extraction using a Gabor filter and high-resolution remote sensing imagery[J].Geomatics and Information Science of Wuhan University,2013,38(9):1063-1067.
[11] 施蓓琦,刘春,陈能,等.利用高光谱遥感影像纹理滤波的城市居民地识别[J].武汉大学学报:信息科学版,2012,37(8):915-920. Shi B Q,Liu C,Chen N,et al.Residential area recognition using texture filtering from hyper-spectral remote sensing imagery[J].Geomatics and Information Science of Wuhan University,2012,37(8):915-920.
[12] Otsu N.A threshold selection method from gray-level histograms[J].IEEE Transaction on System Man and Cybernetic,1979,9(1):62-66.
[1] SUN Chao, CHEN Zhenjie, WANG Beibei. Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou[J]. Remote Sensing for Land & Resources, 2020, 32(4): 154-162.
[2] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[3] REN Xiaoyan, HE Yanfen, WANG Zongming. Spatial-temporal characteristics of construction land expansion and occupation of cultivated land in urban agglomeration of central and southern Liaoning Province based on Remote Sensing[J]. Remote Sensing for Land & Resources, 2020, 32(3): 98-105.
[4] CHANG Bianrong, LI Rendong. A study of remote sensing monitoring and spatial variation of construction land expansion in Wuhan City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 118-123.
[5] YI Fengjia, LI Rendong, CHANG Bianrong, QIU Juan. Spatial-temporal features of construction land expansion in Changzhutan (Changsha-Zhuzhou-Xiangtan) area based on remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 160-166.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech