Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 190-196     DOI: 10.6046/gtzyyg.2016.01.28
GIS |
Platform of online interpretation and attitude measurement for faults using high resolution remote sensing image
GUO Qiqian1, LI Shengle2, LIU Zhumei2
1. Second Crust Monitering and Application Center, China Earthquake Administration, Xi'an 710054, China;
2. Institute of Seismology, China Earthquake Administration, Wuhan 430071, China
Download: PDF(7331 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To solve the problems of online interpretation and attitude measurement for faults in the application of high resolution remote sensing, the authors developed a platform of online interpretation and attitude measurement for faults by using high resolution remote sensing image and application programmers interface provided by Web Map Service. The platform allows users to analyze the geological structure as well as identify and vectorize the fault. On this platform, vector data are saved as extensible markup language(XML)and can be transformed into typical GIS data formats, and existing GIS data are allowed to be viewed and calibrated after format conversion. Imbedding of Google Earth, through Google Earth Plug-in, enables users to calculate the fault attitude using the DEM on this platform. Multi-point method is adopted to improve calculation accuracy. The results show that the method of interpretation and attitude measurement for faults based on Web Map Service, which takes advantage of fault interpretation using high resolution remote sensing image and breaks through the data source limitation of remote sensing image and DEM data, can accurately extracts geographic information and attitude of geological structure,and the platform possesses data sharing and application portability.

Keywords UAV titled images      free network adjustment      corresponding points forecast      SIFT      SRTM     
:  TP753  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Zheng
LING Xiao
SUN Changkui
LI Yongzhi
Cite this article:   
ZHAO Zheng,LING Xiao,SUN Changkui, et al. Platform of online interpretation and attitude measurement for faults using high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 190-196.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.28     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/190

[1] 王润生,熊盛青,聂洪峰,等.遥感地质勘查技术与应用研究[J].地质学报,2011,85(11):1699-1743. Wang R S,Xiong S Q,Nie H F,et al.Remote sensing technology and its application in geological exploration[J].Acta Geologica Sinica,2011,85(11):1699-1743.

[2] 彭丹青,李京,陈云浩,等.基于先进对地观测卫星遥感影像的断裂识别——以江西德兴为例[J].自然灾害学报,2008,17(6):124-128. Peng D Q,Li J,Chen Y H,et al.Fracture system recognition and interpretation based on advanced land observing satellite remote sensing image:A case study of Dexing,Jiangxi[J].Journal of Natural Disasters,2008,17(6):124-128.

[3] 隋志龙,李德威,黄春霞.断裂构造的遥感研究方法综述[J].地理学与国土研究,2002,18(3):34-37,44. Sui Z L,Li D W,Huang C X.Overview of research approach of faults based on remote sensing technology[J].Geography and Territorial Research,2002,18(3):34-37,44.

[4] 李家存,魏永明,蔺启忠.遥感信息在南水北调西线工程区构造解译中的应用[J].吉林大学学报:地球科学版,2004,34(1):150-153. Li J C,Wei Y M,Lin Q Z.The application of remote sensing information in the structure interpretation of the west route project of south-to-north water transfer[J].Journal of Jilin University:Earth Science Edition,2004,34(1):150-153.

[5] 段福州,赵文吉,李家存,等.基于三维地理信息系统的岩层产状测量方法[J].吉林大学学报:地球科学版,2011,41(1):310-315. Duan F Z,Zhao W J,Li J C,et al.Measurement method of strata attitude based on three-dimensional geographic information system[J].Journal of Jilin University:Earth Science Edition,2011,41(1):310-315.

[6] 刘南,刘仁义.Web GIS原理及其应用[M].北京:科学出版社,2002. Liu N,Liu R Y.Principles and Applications of Web GIS[M].Beijing:Science Press,2002.

[7] 中国地震局.中国地震活动断层探测技术系统技术规程[M].北京:地震出版社,2005. China Earthquake Administration.Stipulation on Technical System for China Earthquake Active Fault Surveying[M].Beijing:Seismological Press,2005.

[8] 闻学泽,Allen C R,罗灼礼,等.鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J].地震学报,1989,11(4):362-372. Wen X Z,Allen C R,Luo Z L,et al.Segmentation,geometric features,and their seismotectonic implications for the Holocene Xianshuihe fault zone[J].Acta Seismologica Sinica,1989,11(4):362-372.

[9] 邓启东,闻学泽.活动构造研究——历史、进展与建议[J].地震地质,2008,30(1):1-30. Deng Q D,Wen X Z.A review on the research of active tectonics:History,progress and suggestions[J].Seismology and Geology,2008,30(1):1-30.

[10] 孔祥元,郭际明,刘宗泉.大地测量学基础[M].武汉:武汉大学出版社,2010. Kong X Y,Guo J M,Liu Z Q.Foundation of Geodesy[M].Wuhan:Wuhan University Press,2010.

[11] 蒲浩,杨新林,赵海峰,等.基于Google Earth的岩层产状测量方法[J].西南交通大学学报,2012,47(6):949-954. Pu H,Yang X L,Zhao H F,et al.Measurement method of strata attitude based on Google Earth[J].Journal of Southwest Jiaotong University,2012,47(6):949-954.

[12] 王俊锋,白宗亮,田琮,等.Google Earth在地质解译中的应用[J].新疆地质,2014,32(1):136-140. Wang J F,Bai Z L,Tian Z,et al.The application of Google Earth in geological interpretation[J].Xinjiang Geology,2014,32(1):136-140.

[1] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[2] Bai, Yuying, Chengling, Yanru, Shihu. Different remote sensing image matching methods based on multiple constraints[J]. Remote Sensing for Land & Resources, 2020, 32(3): 49-54.
[3] Jinjie KANG, Haoping QI, Qinghua YANG, Hua CHEN. Study of remote sensing detection method for road obstacle and accessibility evaluation[J]. Remote Sensing for Land & Resources, 2020, 32(2): 94-102.
[4] Famao YE, Wei LUO, Yanfei SU, Xuqing ZHAO, Hui XIAO, Weidong MIN. Application of convolutional neural network feature to remote sensing image registration[J]. Remote Sensing for Land & Resources, 2019, 31(2): 32-37.
[5] YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
[6] DU Shouji, ZOU Zhengrong, ZHANG Yunsheng, ZHANG Minglei. An automatic tie point matching method for L0 level airborne three-line-array images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 65-70.
[7] LI Qian, GAN Zheng, ZHI Xiaodong, LIU Yue, WANG Jianchao, JIN Dingjian. Research on matching algorithm of UAV infrared sensor data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 86-91.
[8] LI Fuyu, YE Famao. Summarization of SIFT-based remote sensing image registration techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 14-20.
[9] ZHAO Zheng, LING Xiao, SUN Changkui, LI Yongzhi. UAV tilted images matching research based on POS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 87-92.
[10] GENG Juan, HE Chenglong, LIU Xianxin. UAV image matching based on CSIFT feature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 93-100.
[11] SUN Bin, BIAN Hui, WANG Peizhong. Image registration algorithm based on SIFT and potential function adjusting location of points[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 36-41.
[12] WAN Jie, LIAO Jingjuan, XU Tao, SHEN Guozhuang. Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: A case study in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 100-105.
[13] LI Weifeng, ZHOU Jinqiang, FANG Shenghui. Image registration method based on improved Hausdorff distance[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 93-98.
[14] WANG Xiaohua, DENG Kazhong, YANG Huachao. Automatic SAR image registration of integrated complementary invariant features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 52-56.
[15] ZHANG Wei, YAO Qi, YANG Jinzhong, YU Hao, WU Jianyong. Geomorphic characteristics of segmental activities of the Longmenshan fault zone since late Cenozoic[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech