Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 52-56     DOI: 10.6046/gtzyyg.2014.01.10
Technology and Methodology |
Automatic SAR image registration of integrated complementary invariant features
WANG Xiaohua1,2, DENG Kazhong2, YANG Huachao2
1. Henan Polytechnic University, School of Surveying and Land Information Engineering, Jiaozuo 454000, China;
2. China University of Mining and Technology, Jiangsu Key Laboratory of Resources and Environmental Information Engineering, Xuzhou 221116, China
Download: PDF(956 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The accurate synthetic aperture Radar (SAR) image registration is the prerequisite for exact analysis of mine deformation. Many image registration algorithms have been proposed, but the results are not satisfactory when these registration algorithms are directly applied to SAR image. In view of such a situation, the authors put forward an integrated registration approach in this paper. The first step of this approach is the coarse matching with Canny edge for region division; then the fine matching is performed by SIFT algorithm with improved Canny edge features; finally, the accurate registration SAR image is obtained. This approach has fewer computations than that simply using SIFT feature matching. Experimental analyses with SAR images demonstrate the efficiency and accuracy of this approach for mine SAR image registration, which provides high-quality image data for comprehensive management in mining areas.

Keywords soil moisture      MODIS      thermal inertia      apparent thermal inertia(ATI)     
:  TP75  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Meng
FENG Qi
XI Haiyang
Cite this article:   
HU Meng,FENG Qi,XI Haiyang. Automatic SAR image registration of integrated complementary invariant features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 52-56.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.10     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/52

[1] 焦斌亮, 樊曼曼.基于改进SIFT算法的多源遥感影像配准研究[J].激光与红外, 2011, 41(12):1383-1386. Jiao B L, Fan M M.Research on the multi-source remote sensing image registration based on the improved algorithm of SIFT[J].Laser and Infrared, 2011, 41(12):1383-1386.

[2] 苏延超, 艾海舟, 劳世竑.图像和视频中基于部件检测器的人体姿态估计[J].电子与信息学报, 2011, 33(6):1413-1419. Su Y C, Ai H Z, Lao S H.Part detector based human pose estimation in images and videos[J].Journal of Electronics and Information Technology, 2011, 33(6):1413-1419.

[3] 张如艳, 王士同.基于重尾噪声分布特性的多分类人脸识别方法[J].电子与信息学报, 2012, 34(3):523-528. Zhang R Y, Wang S T.Multi-classification recognition method applied to facial image based on distribution characteristic of heavy-tailed noise[J].Journal of Electronics and Information Technology, 2012, 34(3):523-528.

[4] Dare P, Dowman I.An improved model for automatic feature-based registration of SAR and SPOT images[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2001, 56(1):13-28.

[5] DeBonet J S, Chao A.Structure-driven SAR image registration[EB/OL].http://www.ai.mit.edu.

[6] Huang Y, Wang J G, Huang S J.Image matching algorithm and implement for SAR images[J].Journal of Electronics and Information Technology, 2005, 27(2):6-9.

[7] 于秋则.合成孔径雷达图像匹配导航技术研究[D].武汉:华中科技大学, 2004. Yu Q Z.Research on synthetic aperture Radar(SAR) image matching for navigation[D].Wuhan:Huazhong University of Science and Technology, 2004.

[8] Long X, Wu X Q.Motion segmentation based on fusion of MSRF segmentation and canny operator[J].Procedia Engineering, 2011, 15:1637-1641.

[9] Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.

[10] Jaseema Y J H, Mohamed S M, Zulaikha B S.Robust segmentation algorithm using LOG edge detector for effective border detection of noisy skin lesions[C]//International Conference on Computer, Communication and Electrical Technology-ICCCET 2011.

[11] Zhang Z, Zhao G.Butterworth filter and sobel edge detection to image[C]//2011 International Conference on Multimedia Technology, Hangzhou:ICMT, 2011:254-256.

[12] Zhang J G, Liu J J, Geng Y J.Laplacian image edge detection based on secondary-sampling wavelet transform[C]//2010 3rd International Congress on Image and Signal Processing:Yantai:CISP, 2010:1059-1062.

[13] 吕金建, 文贡坚, 王继阳, 等.一种改进的基于不变描述子的图像自动配准方法[J].信号处理, 2009, 25(2):216-222. Lyu J J, Wen G J, Wang J Y, et al.An improved automated image registration method based on invariant descriptors[J].Signal Processing, 2009, 25(2):216-222.

[14] 杨秋菊, 肖雪梅.基于改进Canny特征点的SIFT算法[J].计算机工程与设计, 2011, 32(7):2428-2431. Yang Q J, Xiao X M.Improved SIFT algorithm based on canny feature points[J].Computer Engineer and Design, 2011, 32(7):2428-2431.

[15] 李伟生, 王卫星, 罗代建.用Harris-Laplace特征进行遥感图像配准[J].四川大学学报:工程科学版, 2011, 43(4):89-94. Li W S, Wang W X, Luo D J.Remote sensing image registration by using Harris-Laplace features[J].Journal of Sichuan University:Engineering Science Edition, 2011, 43(4):89-94.

[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[6] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[7] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[8] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[9] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[10] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[11] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[12] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[13] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[14] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[15] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech