Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (3) : 31-36     DOI: 10.6046/gtzyyg.2016.03.06
|
Spatial-spectral constrained graph-based semi-supervised classification for hyperspectral image
HE Hao1,3, SHEN Yonglin1, LIU Xiuguo1, MA Li2
1. Faculty of Information Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China;
2. Faculty of Mechanical and Electronic Information, China University of Geosciences(Wuhan), Wuhan 430074, China;
3. Faculty of Architecture Engineering, Xinjiang University, Urumqi 830047, China
Download: PDF(2540 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

It is difficult to obtain labels of samples for hyperspectral data. Few labeled samples usually lead to low classification accuracy. In view of this situation, an improved spatial and spectral constraint graph-based semi-supervised classification algorithm (SS-GSSC) is proposed. First of all, Euclidean distance combined with radial basis function (RBF) is used to construct the spatial similarity edge weight; Spectral correlation angle (SCA) is used to calculate spectral similarity weights; Then, the two kinds of weights are combined to the form of product to restrict the similarity measurement; Finally, the label propagation algorithm is used to predict the test data labels so as to obtain the classification results. Classification experiments on Indian Pines image and DC Sub image show that, compared with the previous classification algorithm, the algorithm designed by the authors can better eliminate the phenomenon of the existence of the same category map spot included in other categories of scattered points, and can achieve higher classification accuracy under the condition of less label points (25 per class).

Keywords geological disaster      remote sensing investigation      cause analysis      Wudong coal mine     
:  TP79  
Issue Date: 01 July 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ruiguo
Cite this article:   
WANG Ruiguo. Spatial-spectral constrained graph-based semi-supervised classification for hyperspectral image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 31-36.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.03.06     OR     https://www.gtzyyg.com/EN/Y2016/V28/I3/31

[1] Fauvel M,Tarabalka Y,Benediktsson J A,et al.Advances in spectral-spatial classification of hyperspectral images[J].Proceedings of the IEEE,2013,101(3):652-675.
[2] 赵银娣,张良培,李平湘.广义马尔可夫随机场及其在多光谱纹理影像分类中的应用[J].遥感学报,2006,10(1):123-129. Zhao Y D,Zhang L P,Li P X.Universal Markov random fields and its application in multispectral textured image classification[J].Journal of Remote Sensing,2006,10(1):123-129.
[3] 黄昕,张良培,李平湘.融合形状和光谱的高空间分辨率遥感影像分类[J].遥感学报,2007,11(2):193-200. Huang X,Zhang L P,Li P X.Classification of high spatial resolution remotely sensed imagery based on the fusion of spectral and shape features[J].Journal of Remote Sensing,2007,11(2):193-200.
[4] Xia J S,Chanussot J,Du P J,et al.Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2532-2546.
[5] Wang L G,Hao S Y,Wang Q M,et al.Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,97:123-137.
[6] Ji R R,Gao Y,Hong R C,et al.Spectral-spatial constraint hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(3):1811-1824.
[7] Ghamisi P,Benediktsson J A,Ulfarsson M O.Spectral-spatial classification of hyperspectral images based on hidden Markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(5):2565-2574.
[8] Li J Y,Zhang H Y,Huang Y C,et al.Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(6):3707-3719.
[9] Zhu X J.Semi-Supervised Learning with Graphs[D].Pittsburgh,Pennsylvania State:Carnegie Mellon University,2005.
[10] Landgrebe D.Multispectral Data Analysis:A Signal Theory Perspective[R].West Lafayette:School of Electrical and Computer Engineering,Purdue University,1998.

[1] Jie CHEN, Zihong GAO, Shanshan WANG, Dingjian JIN. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2020, 32(2): 1-10.
[2] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[3] GAO Hui, ZHANG Jinghua, ZHANG Jianlong. Remote sensing ecological environment survey of county area based on ZY1-02C: A case study of Puge County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 144-150.
[4] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[5] YANG Jinzhong, NIE Hongfeng, JING Qingqing. Preliminary analysis of mine geo-environment status and existing problems in China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 1-7.
[6] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[7] WANG Ruiguo. Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on WorldView-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 132-138.
[8] JIN Dingjian, ZHI Xiaodong, WANG Jianchao, ZHANG Dandan, SHANG Boxuan. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 183-189.
[9] WEI Yongming, WEI Xianhu, CHEN Yu. Analysis of distribution regularity and development tendency of earthquake secondary geohazards in Yingxiu-Maoxian section along the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 179-186.
[10] GUO Zhaocheng, TONG Liqiang, ZHENG Xiongwei, QI Jianwei, WANG Jianchao. Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 99-105.
[11] XU Yueren, HE Honglin, CHEN Lize, SHEN Xuhui. Dynamic remote sensing interpretation of geological disasters in Nanping City of Fujian Province using CBERS serial data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 153-159.
[12] ZHANG Mingyang, MA Weifeng, TANG Xiangdan, LI Xianwei. Automatic mapping of the results of 3D remote sensing interpretation of geological disasters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 164-167.
[13] MAO Yujing, ZHAO Zhifang, WU Wenchun, WANG Fengde. Remote sensing investigation of water erosion desertification and cause in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 123-129.
[14] NAN Jun-xiang, ZHAO Zhi-fang, HONG You-tang, DU Rui-ling. Remote Sensing Investigation of Coal Mines in Xuanwei of Yunnan Province for Their Development[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 121-124.
[15] DU Rui-ling, ZHAO Zhi-fang, HONG You-tang, NAN Jun-xiang. Three-dimensional Discriminate of Mine Hidden Geological Disaster Based on 3S Technology of Anning Phosphate Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 138-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech