Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 1-10     DOI: 10.6046/gtzyyg.2020.02.01
|
A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area
Jie CHEN1,2, Zihong GAO1, Shanshan WANG1, Dingjian JIN1
1. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(3294 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Three Gorges reservoir area is an important part of the the upper Yangtze River economic belt. It is very necessary and important to carry out comprehensive, multi-level and regular systematic geological survey. This paper gives a review on the development and progress of geological survey in the Three Gorges Reservoir area based on aerial remote sensing technology conducted in the past forty years, briefly describes the principle and characteristics of the aeronautical remote sensing technology that has been proved to be successive, and sorts out the results obtained by using different technical methods,affirms the important role of aerial remote sensing technology in the field of geological survey, summarizes the problems encountered in practice, and predicts the application prospects of aerial remote sensing technology in the geological survey of the Three Gorges reservoir area. The application and research results show that the aerial remote sensing technology has played an important role in geological surveys such as disaster body identification, ecological environment monitoring and resource exploration on the basis of its advantages such as flexibility, efficiency, detailed survey, and accuracy.

Keywords aerial remote sensing      Three Gorges reservoir area      geological disaster      ecological environment     
:  TP79  
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie CHEN
Zihong GAO
Shanshan WANG
Dingjian JIN
Cite this article:   
Jie CHEN,Zihong GAO,Shanshan WANG, et al. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2020, 32(2): 1-10.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.01     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/1
Fig.1  DOM,DEM and the 3D simulation system of the Three Gorges Reservoir area
Fig.2  Deformation model distribution of Riparian zone in Zigui County
航空摄影测量 机载LiDAR测量
测量方法 以立体像对的共轭像点匹配后,再以共线式计算 以雷达测距扫描,直接输出X,Y,Z坐标值
成果内容 仅有数字地表模型(digital surface model,DSM),若需DEM则需人工处理 利用雷达多重回波及软件滤波,可获得DSM和DEM
几何纠正 以地面控制点和空中三角平差,反求外方位元素 整合全球卫星导航系统(global navigation satellite system,GNSS)及惯性测量单元(inertial measurement unit,IMU)直接解算外方位元素
外业工作 地面控制点布设和测量 GNSS地面基站架设
作业连贯性 低(输入影像和控制点,以软件校正处理生成初步成果,再经过人工编辑输出) 高(飞行完毕后将点云数据与地面GNSS数据联合差分,完成匹配和检校后即可输出成果)
自动化程度 低(需人工检查和修编) 高(少量人工修正)
数字化程度 质检等环节未完全数字化 完全数字化
水平精度 0.3~0.5 m(地面分辨率0.5 m) 0.15~1.0 m(地面分辨率0.35 m)
高程精度 0.5~2.5 m(地面分辨率1.0 m) 0.10~1.5 m(地面分辨率0.15 m)
Tab.1  Comparison of aerial photogrammetry and airborne LiDAR
Fig.3  Distribution of landslides and unstable slopes discriminated by LiDAR technology
Fig.4  Application of geological hazard investigation based on 3D model
[1] 廖瑞祥, 邹良超. 基于GIS的三峡L库区滑坡空间数据库设计[J].灾害与防治工程, 2010(01):28-32.
[1] Liao R X, Zou L C. GIS-based landslide spatial database design in the Three Gorges Reservoir aera[J].Disaster and Control Engineering, 2010(01):28-32.
[2] 刘尚忠 , 长江三峡水利枢纽(重庆-碚石段)灾害地质的航卫片解译及研究[R]. 四川省地质矿产局地质矿产科研所, 1985.
[2] Liu S Z. Interpretation and research on the satellite geology of the disaster geology of the Three Gorges Water Conservancy Project(Chongqing-Beishi Section)[R]. Geological and Mineral Research Institute of Sichuan Province Geology and Mineral Resources Bureau, 1985.
[3] 郑学东, 谭德宝, 张治中. 三峡水库DEM制作技术线路与方法[J]. 长江科学院学报, 2005,(4):37-40.
[3] Zheng X D, Tan D B, Zhang Z Z. Three Gorges Reservoir’s DEM producing procedure and method[J]. Journal of Yangtze River Scientific Research Institute, 2005,(4):37-40.
[4] 金鼎坚, 王建超, 吴芳, 等. 航空遥感技术及其在地质调查中的应用[J]. 国土资源遥感, 2019,31(04):1-10.doi: 10.6046/gtzyyg.2019.04.01.
[4] Jin D J, Wang J C, Wu F, et al. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land and Resources, 2019,31(4):1-10.doi: 10.6046/gtzyyg.2019.04.01.
[5] 雷光宇. 三峡库区涉水土质滑坡稳定性分析及处治技术研究[D]. 徐州:中国矿业大学, 2009.
[5] Lei G Y. Stability analysis and treatment technology of Wading soil landslide in the Three Gorges Reservoir area[D]. Xuzhou:China University of Mining and Technology, 2009.
[6] 赵瑞欣. 三峡工程库水变动下堆积层滑坡成灾风险研究[D].北京:中国地质大学(北京), 2016.
[6] Zhao R X. Research on the colluvial landslide hazard risk during reservoir water level fluctuation in Three Gorges Reservoir[D].Beijing:China University of Geosciences(Beijing), 2016.
[7] 于宪煜. 三峡库区蓄水期间巴东段地质环境变化信息提取及分析[D]. 武汉:中国地质大学, 2012.
[7] Yu X Y, Extraction and analysis of geological environment change information in Badong section of Three Gorges Reservoir area during water storage period[D]. Wuhan:China University of Geosciences, 2012.
[8] 姜晨光, 王辉, 王立新, 等. 长江三峡库区连续运行卫星定位服务系统构建问题的思考[J].南水北调与水利科技, 2008(3):38-42.
[8] Jiang C G, Wang H, Wangdd L X, et al. Thought on building CORS at the Three Gorges Reservoir area[J].South-to-North Water Transfers and Water Science&Technology, 2008(3):38-42.
[9] 陈萍. 三峡库区滑坡稳定性分析[D]. 重庆:重庆大学, 2002.
[9] Chen P. Stability Analysis of landslides in the Three Gorges Reservoir area[D]. Chongqing:Chongqing University, 2002.
[10] 杨静黎. 三峡库区滑坡岩土力学参数分区研究[D]. 重庆:重庆交通大学, 2014.
[10] Yang J L. Study on rock and soil mechanics parameters partition of landslide in the Three Gorges Reservoir[D]. Chongqing:Chongqing Jiaotong University, 2014.
[11] 李海星, 惠守文, 丁亚林. 国外航空光学测绘装备发展及关键技术[J]. 电子测量与仪器学报, 2014,28(5):469-477.
[11] Li H X, Hui S W, Ding Y L. Development and key techniques of optical mapping equipment in foreign airborne[J]. Journal of electronic measurement and instrumentation. 2014,28(5):469-477.
[12] 熊盛青, 聂洪峰, 杨金中. 遥感技术在地质灾害调查与监测中的应用[C].全国突发性地质灾害应急处置与灾害防治技术高级研讨会论文集. 2010.
[12] Xiong S Q, Nie H F, Yang J Z. Application of remote sensing technology in geological hazard investigation and monitoring[C].Proceedings of the National Symposium on Emergency Response and Disaster Prevention Technology for Sudden Geological Disasters, 2010.
[13] 段福洲. 近地轻型数码航空摄影测量系统研究[D]. 北京:首都师范大学, 2007.
[13] Duan F Z. Research on near-earth light digital aerial photogrammetry system[D]. Beijing:Capital Normal University, 2007.
[14] 王轶, 张晓坤, 童立强. 三峡库区遥感三维立体仿真系统及其应用[J]. 遥感信息, 2012,27(04):40-43.
[14] Wang Y, Zhang X K, Tong L Q. Development and application of a 3D simulation system based on remotely sensed information within Three Gorges Reservoir area[J]. Remote sensing information, 2012,27(04):40-43.
[15] 刘威力, 张文春. ADS100航空摄影测量系统特点和应用[J].科学技术创新, 2015(08):18.
[15] Liu W L, ZHANG W C. ADS100 aerial photogrammetry system features and applications[J].Scientific and Technological Innovation, 2015(08):18.
[16] 邓琼. 浅析ADS100数字航空摄影测量系统的经济效益研究[J].现代经济信息, 2015(16):340.
[16] Deng Q. Analysis on the economic benefits of ADS100 digital aerial photogrammetry system[J].Modern Economic Information, 2015(16):340.
[17] 陈洁, 杜磊, 肖春蕾, 等. POS辅助机载LiDAR无地面控制点DEM,DOM制作[J]. 测绘与空间地理信息, 2015,38(3):50-53.
[17] Chen J, Du L, Xiao C L, et al. DEM and DOM production without ground control points by POS-supported airborne LiDAR[J]. Geomatics & Spatial Infomation Technology, 2015,38(3):50-53.
[18] 刘圣伟, 郭大海, 陈伟涛, 等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质, 2012,39(2):507-517.
[18] Liu S W, Guo D H, Chen W T, et al. The application of airborne lidar technology in landslide investigation and monitoring of Three Gorges Reservoir area[J]. Geology in China. 2012,39(2):507-517.
[19] 杜磊, 陈洁, 李敏敏, 等. 机载激光雷达技术在滑坡调查中的应用——以三峡库区张家湾滑坡为例[J]. 国土资源遥感, 2019,31(1):180-186.doi: 10.6046/gtzyyg.2019.01.24.
[19] Du L, Chen J, Li M M, et al. The application of airborne LiDAR technology to landslide survey:A case study of Zhangjiawan Village landslides in Three Gorges Reservoir aera[J]. Remote Sensing for Land and Resources, 2019,31(1):180-186.doi: 10.6046/gtzyyg.2019.01.24.
[20] 李显巨. 基于LiDAR技术的复杂地质环境区滑坡识别研究[D]. 武汉:中国地质大学, 2012.
[20] Li X J. Research of the landslide recognition based on LiDAR technology in the complex geological environment area[D]. Wuhan:China University of Geosciences, 2012.
[21] 陈洁, 李京, 杜磊, 等. 紧耦合直接地理定位技术精度分析与应用[J].测绘通报, 2017(1):93-96,111.
[21] Chen J, Li J, Du L, et al. Application and precision analysis of tight coupling direct georeferencing method[J].Bulletin of surveying and mapping, 2017(1):93-96,111.
[22] 郭大海, 吴立新, 王建超, 等. IMU/DGPS辅助航空摄影新技术的应用[J].国土资源遥感, 2006(1):51-55,74.doi: 10.6046/gtzyyg.2006.01.12.
[22] Guo D H, Wu L X, Wang J C, et al. The application of IMU /DGPS-Supported photogrammetry[J].Remote Sensing for Land and Resources, 2006(1):51-55,74.doi: 10.6046/gtzyyg.2006.01.12.
[23] 庞剑波, 郑雄伟. 三峡库区首获航空遥感数据[J].山东国土资源, 2009(5):57.
[23] Pang J B, Zheng X W. The first acquisition of airborne remote sensing data in the Three Gorges reservoir area[J].Shandong Land and Resources, 2009(5):57.
[24] 郭大海, 王建超, 郑雄伟. 机载POS系统直接地理定位技术理论与实践[M]. 北京: 地质出版社, 2009.
[24] Guo D H, Wang J C, Zheng X W. Theory and practice of direct geolocation technology for airborne POS systems[M]. Beijing: Geological Publishing House, 2009.
[25] 王峰, 吴云东. 无人机遥感平台技术研究与应用[J].遥感信息, 2010(2):114-118.
[25] Wang F, Wu Y D. Research on application of UAS borne remote sensing[J].Remote sensing infomation, 2010(2):114-118.
[26] 杨娟. 多轴旋翼无人机航摄在三峡库区群发地质灾害应急调查监测中的应用探析[J]. 中国锰业, 2017,35(1):147-151.
[26] Yang J. Investigation and monitoring of multi axis unmanned aerial vehicle(UAV) with photographies in mass geological disasters in Three Gorges Reservoir region[J]. China’s Manganese Industry, 2017,35(1):147-151.
[27] 李伟哲. 基于ContextCapture实景建模及应用[J].西北水电, 2018(03):27-31.
[27] Li W Z. Scenic modeling and application based on context capture[J].Northwest Hydropower, 2018(03):27-31.
[28] 陈洁, 郑雄伟, 孙秉钊.航空摄影DG法若干问题探讨和实践研究[J].地理空间信息, 2015, 13(2):83-85,97,12.
[28] Chen J, Zheng X W, Sun B Z. Some problems of direct georeferencing and practice research[J].Geospatial Information, 2015, 13(2):83-85,97,12.
[29] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017,46(10):1399-1407.
[29] Zhang X H, Li X X, Li P. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1399-1407.
[30] 孙超. PPP后处理中卫星钟差内插方法研究[D]. 青岛:山东科技大学, 2011.
[30] Sun C. Research on interpolation method of satellite clock error in PPP post processing[D]. Qingdao:Shandong University of Science and Technology, 2011.
[1] CHEN Jie, CAI Jun, LI Jing, HE Peng. Oblique aerial photography technology and its application to geological survey:A case study of Wuxia section in the Three Gorges reservoir[J]. Remote Sensing for Land & Resources, 2021, 33(1): 167-173.
[2] YING Kui, LI Xudong, CHENG Dongya. Remote sensing assessment of ecological environment quality in karst trough basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 173-182.
[3] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[4] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[5] Xiang WANG, Xinxin WANG, Xiu SU, Qinghui MENG, Dejun ZOU, Xiaodong YI, Lin WANG, Shiyong WEN, Jianhua ZHAO. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform: Take Hongyanhe Nuclear Power Plant,Liaoning Province,as example[J]. Remote Sensing for Land & Resources, 2018, 30(4): 182-186.
[6] GAO Hui, ZHANG Jinghua, ZHANG Jianlong. Remote sensing ecological environment survey of county area based on ZY1-02C: A case study of Puge County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 144-150.
[7] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[8] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[9] CHEN Mingye, CHEN Lei, ZHOU Xun. A remote sensing study of spatio-temporal changes of ecological environment of Shandian River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 166-172.
[10] LI Ru, ZHU Boqin, TONG Xiaowei, YUE Yuemin, GAN Huayang, WAN Sida. Change analysis in Hainan Dongzhai Wetland Reserve based on remote sensing data obtained during 2002-2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 149-155.
[11] YANG Jinzhong, NIE Hongfeng, JING Qingqing. Preliminary analysis of mine geo-environment status and existing problems in China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 1-7.
[12] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[13] WANG Ruiguo. Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on WorldView-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 132-138.
[14] JIN Dingjian, ZHI Xiaodong, WANG Jianchao, ZHANG Dandan, SHANG Boxuan. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 183-189.
[15] ZHA Dongping, SHEN Zhan, LIU Zugen, LIAO Bing, WANG Wei. Changes of ecological environment in the Dexing copper mine based on TM images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech