Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 37-44     DOI: 10.6046/gtzyyg.2018.01.06
Orginal Article |
High resolution remote sensing image segmentation using super-pixel MRF for agricultural area
Tengfei SU(), Shengwei ZHANG(), Hongyu LI
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Download: PDF(1062 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In view of the problem that the traditional super-pixel Markov random field (MRF) image segmentation model cannot fully utilize spatial context information, a new super-pixel MRF model is proposed. This algorithm incorporates higher-order neighborhood model into the interactive potential term of MRF. The new model enables the interactive potential to fully exploit the spatial context information contained in the super-pixel neighborhood system. Additionally, a new class-wise estimation method for β is proposed, which is based on norm distance. By utilizing two scenes of high-resolution remote sensing images acquired over different agricultural landscapes, validation experiment was conducted. The experiment results indicate that the proposed method can better use the contextual information such as edge strength, thus achieving higher segmentation accuracy. Moreover, the algorithm proposed by the authors showed superior performance when it was compared with other super-pixel MRF approaches.

Keywords super-pixel      Markov random field (MRF)      higher-order neighborhood      agricultural area     
:  TP79  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tengfei SU
Shengwei ZHANG
Hongyu LI
Cite this article:   
Tengfei SU,Shengwei ZHANG,Hongyu LI. High resolution remote sensing image segmentation using super-pixel MRF for agricultural area[J]. Remote Sensing for Land & Resources, 2018, 30(1): 37-44.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.06     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/37
Fig.1  Illustration of super-pixels’ boundary
编号 空间分辨率/m 成像日期 中心经纬度 覆盖地区
S1 5.8 2015-7-31 UTC E117.795 3°,N44.532 6° 内蒙古锡林郭勒盟
S2 4.0 2004-6-20 UTC E105.176 5°,N37.558 0° 宁夏中卫市
Tab.1  Basic information of the image data used for experiment
Fig.2  Subsets for experiment
Fig.3  Relationship between the performance of the proposed algorithm and hn
Fig.4  Super-pixel segmentation results and edge strength extraction results of S1 and S2 subsets
Fig.5  S1 subset segmentation results of 4 different MRF algorithms
Fig.6  S2 subset segmentation results of 4 different MRF algorithms
算法 S1子影像 S2子影像
OA/% Kappa OA/% Kappa
M0 97.320 6 0.963 1 96.673 2 0.949 3
M1 96.829 6 0.956 3 95.351 4 0.929 1
M2 93.443 4 0.911 0 96.544 4 0.947 9
M3 88.015 6 0.840 5 94.590 9 0.918 6
Tab.2  Quantitative evaluation of segmentation accuracy by 4 algorithms for S1 and S2 subsets
[1] Löw F,Conrad C,Michel U.Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,108:191-204.
[2] Kim H O,Yeom J M.Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data[J].International Journal of Remote Sensing,2014,35(19):7046-7068.
[3] 杨闫君,占玉林,田庆久,等.基于GF-1/WFV NDVI时间序列数据的作物分类[J].农业工程学报,2015,31(24):155-161.
[3] Yang Y J,Zhan Y L,Tian Q J,et al.Crop classification based on GF-1/WFV NDVI time series[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(24):155-161.
[4] Liu M W,Ozdogan M,Zhu X J.Crop type classification by simultaneous use of satellite images of different resolutions[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(6):3637-3649.
[5] Besag J.On the statistical analysis of dirty pictures[J].Journal of the Royal Statistical Society,Series B Methodological,1986,48(3):259-302.
[6] Kumar S,Hebert M.Discriminative random fields[J].International Journal of Computer Vision,2006,68(2):179-201.
[7] 孙巍,郭敏.基于SLIC与条件随机场的图像分割算法[J].计算机应用研究,2015,32(12):3817-3820,3824.
[7] Sun W,Guo M.Image segmentation based on SLIC and conditional random field[J].Application Research of Computers,2015,32(12):3817-3820,3824.
[8] 刘磊,石志国,宿浩茹,等.基于高阶马尔可夫随机场的图像分割[J].计算机研究与发展,2013,50(9):1933-1942.
[8] Liu L,Shi Z G,Su H R,et al.Image segmentation based on higher order Markov random field[J].Journal of Computer Research and Development,2013,50(9):1933-1942.
[9] Yu Q Y,Clausi D A.IRGS:Image segmentation using edge penalties and region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(12):2126-2139.
[10] Qin A K,Clausi D A.Multivariate image segmentation using semantic region growing with adaptive edge penalty[J].IEEE Transactions on Image Processing,2010,19(8):2157-2170.
[11] 苏腾飞,李洪玉.一种结合GBM的MRF遥感图像分割算法[J].内蒙古农业大学学报(自然科学版),2015,36(1):143-149.
[11] Su T F,Li H Y.GBM-combined MRF method for remote sensing image segmentation[J].Journal of Inner Mongolia Agricultural University(Natural Science Edition),2015,36(1):143-149.
[12] Achanta R,Shaji A,Smith K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282.
[13] Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
[14] Levinshtein A,Stere A,Kutulakos K N,et al.TurboPixels:Fast superpixels using geometric flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2290-2297.
[15] Su T F,Li H Y,Zhang S W,et al.Image segmentation using mean shift for extracting croplands from high-resolution remote sensing imagery[J].Remote Sensing Letters,2015,6(12):952-961.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[3] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[4] SU Tengfei, ZHANG Shengwei, LI Hongyu. Heuristics optimized segmentation of agricultural area for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 106-113.
[5] TAN Xiong, YU Xuchu, ZHANG Pengqiang, FU Qiongying, WEI Xiangpo, GAO Meng. Hyperspectral images classification based on MKSVM and MRF[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 42-46.
[6] LI Ling-ling, ZHU Wen-quan, PAN Yao-zhong, CAO Sen, ZHU Zai-chun. Research on Multi-spectral Image Segmentation of Agriculture Area Based on High Precision Historical Cropland Parcels[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech