|
|
|
|
|
|
Heuristics optimized segmentation of agricultural area for high resolution remote sensing image |
SU Tengfei, ZHANG Shengwei, LI Hongyu |
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohot 010018, China |
|
|
Abstract Many mainstream segmentation algorithms for high resolution remote sensing image (HRI)rarely consider the segmentation quality in their region merging process. In order to solve this problem, this paper proposed a strategy to optimize heuristics with the purpose of enhancing segmentation accuracy of HRI captured over agricultural areas. Intra- and inter- region homogeneity models were firstly proposed, with the former constructed upon within-region spectral variance, and the latter considering edge strength extracted from multi-spectral and vegetation information. The criterion of the proposed heuristics was then constructed by combining the intra- and inter- region homogeneity. The new criterion enables the merging process to take into account the segmentation quality, thus constraining over- and under- segmentation errors effectively. Two scenes of HRI acquired over agricultural areas were utilized for validation experiment, and the performance of the proposed method was compared with other two newly proposed methods. By analyzing the quantitative evaluation of the segmentation results, it is found that the proposed method can remarkably improve the segmentation accuracy of HRI in agricultural landscape.
|
Keywords
geological hazard body
change detection
estimation of variable quantity
|
|
Issue Date: 04 December 2017
|
|
|
[1] Blaschke T,Hay G J,Kelly M,et al.Geographic object-based image analysis:Towards a new paradigm[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:180-191.
[2] Peña-Barragán J M,Ngugi M K,Plant R E,et al.Object-based crop identification using multiple vegetation indices,textural features and crop phenology[J].Remote Sensing of Environment,2011,115(6):1301-1316.
[3] Peña J,Gutiérrez P,Hervás-Martínez C H,et al.Object-based image classification of summer crops with machine learning methods[J].Remote Sensing,2014,6(6):5019-5041.
[4] Kim H O,Yeom J M.Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data[J].International Journal of Remote Sensing,2014,35(19):7046-7068.
[5] 苏腾飞,李瑞平.面向对象的农田信息遥感影像分割算法[J].测绘科学,2016,41(3):49-53.
Su T F,Li R P.An object-oriented segmentation method for RS imagery of cropland information[J].Science of Surveying and Mapping,2016,41(3):49-53.
[6] Tilton J C,Tarabalka Y,Montesano P,et al.Best merge region-growing segmentation with integrated nonadjacent region object aggregation[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4454-4467.
[7] Beaulieu J M,Goldberg M.Hierarchy in picture segmentation:A stepwise optimization approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(2):150-163.
[8] Baatz M,Schäpe A.Multiresolution segmentation:An optimizing approach for high quality multi-scale segmentation[C]//Angewandte Geographich Informationsverarbeitung,XII.Germany:Wichmann,2000:12-23.
[9] 苏腾飞,李洪玉.一种两阶段区域生长的遥感图像分割算法[J].遥感技术与应用,2015,30(3):476-485.
Su T F,Li H Y.A two stage region growing method for remote sensing image segmentation[J].Remote Sensing Technology and Application,2015,30(3):476-485.
[10] 朱俊杰,杜小平,范湘涛,等.一种改进的多尺度分形网络演化分割方法[J].遥感技术与应用,2014,29(2):324-329.
Zhu J J,Du X P,Fan X T,et al.A advanced multi-scale fractal net evolution approach[J].Remote Sensing Technology and Application,2014,29(2):324-329.
[11] Zhong Y F,Zhao B,Zhang L P.Multiagent object-based classifier for high spatial resolution imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(2):841-857.
[12] Lassalle P,Inglada J,Michel J,et al.A scalable tile-based framework for region-merging segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(10):5473-5485.
[13] Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
[14] Achanta R,Shaji A,Smith K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282.
[15] 孙 巍,郭 敏.基于SLIC与条件随机场的图像分割算法[J].计算机应用研究,2015,32(12):3817-3820,3824.
Sun W,Guo M.Image segmentation based on SLIC and conditional random field[J].Application Research of Computers,2015,32(12):3817-3820,3824.
[16] Lee H C,Cok D R.Detecting boundaries in a vector field[J].IEEE Transactions on Signal Processing,2002,39(5):1181-1194.
[17] 苏腾飞,李洪玉,屈忠义.高分辨率遥感图像道路分割算法[J].国土资源遥感,2015,27(3):1-6.doi:10.6046/gtzyyg.2015.03.01.
Su T F,Li H Y,Qu Z Y.A study of road segmentation from the high resolution remote sensing image[J].Remote Sensing for Land and Resources,2015,27(3):1-6.doi:10.6046/gtzyyg.2015.03.01.
[18] Crevier D.Image segmentation algorithm development using ground truth image data sets[J].Computer Visual and Image Understanding,2008,112(2):143-159. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|