Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 230-237     DOI: 10.6046/gtzyyg.2018.03.31
|
Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data
Yangming WANG1,2, Jingfa ZHANG2, Zhirong LIU1, Xuhui SHEN2
1. Institute of Disaster Prevention, Hebei 065201, China
2. Institute of Crustal Dynamics, CEA, Beijing 100085, China
Download: PDF(12193 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The remote sensing interpretation of active faults in Shannan region of Tibet was carried out by using multi-source remote sensing data, which showed remarkable difference from previous work. In addition, previous researches made by other people were used to study the distribution and activity of active faults synthetically. First, taking Sentinel-1 Radar images which have properties of all-weather, side looking and penetrating and Landsat ETM+ images that have abundant spectral information as master data sources, combined with high resolution GF-2 remote sensing image, the authors extracted and analyzed geological structure information at different scales. What is more, it was convenient to analyze tectonic geomorphology of active faults from different angles and levels with the help of the fusion of DEM data and ETM+ remote sensing images so as to make 3D visualization remote sensing images. Finally, the authors used a wide range of methods such as image preprocessing, image enhancement and multi-source remote sensing image fusion to reduce the multiple solutions and dubiety of active fault remote sensing interpretation. With the help of Radar and optical remote sensing respective imaging advantages, the authors clearly displayed the characteristics of active fault remote sensing image of the study area. According to the remote sensing interpretation marks of active faults, a total of 4 active faults were interpreted in the study area: the Yarlung Zangbo River fault, the Zanda-Lhaze-Qiongduojiang fault, the Sangri-Cona fault and the Darjeeling-Ngamring-Rinbung fault. The results of active fault interpretation in the study area show that the application of multi-source remote sensing data could greatly improve the accuracy and credibility of the interpretation of active faults and provide a reference for later researches on the study area.

Keywords Shannan area in Tibet      multi-source remote sensing data      active fault interpretation     
:  TP79  
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yangming WANG
Jingfa ZHANG
Zhirong LIU
Xuhui SHEN
Cite this article:   
Yangming WANG,Jingfa ZHANG,Zhirong LIU, et al. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.31     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/230
Fig.1  Schematic diagram of geological structure in the study area
Fig.2  Gram-Schmidt spectral sharpening
Fig.3  Remote sensing interpretation marks of active fault
Fig.4  3D remote sensing image and fault scarps near Gyaca County in the Yarlung Zangbo River fault
Fig.5  3D remote sensing image and sinistral faulted ridges and water of Zanda-Lhaze-Qiongduojiang fault
Fig.6  3D remote sensing image and dextra faulted lakes and ridges of Sangri-Cona fault
Fig.7  Determination of fault location
序号 编号 断层名称 走向 性质 长度/km
1 F1 雅鲁藏布江断裂带 EW 正断层 南倾 330
2 F2 札达—拉孜—邛多江断裂带 近WNW 走滑
断层
左旋 220
3 F3 桑日—错那断裂带 总体为近NW的波状 走滑
断层
右旋,部分区域发育有正断层 120
4 F4 达吉岭—昂仁—仁布断裂带 EN转EW 逆断
部分区域为隐伏断层,南倾 64
Tab.1  Interpretation of active faults in the study area
Fig.8  Remote sensing interpretation of active faults in the study area(ETM+)
Fig.9  Active faults’contact relation in the study area
Fig.10  Force analysis of pull apart basin(ETM+)
[1] 郭慧, 王鑫 . 河北隆尧现今地裂缝与1966年邢台地震关系[J]. 华北地震科学, 2017,35(1):10-16.
[1] Guo H, Wang X . Relationship between the present-day ground fissure in Hebei Longyao and the 1966 Xingtai earthquake[J]. North China Earthquake Sciences, 2017,35(1):10-16.
[2] 郭慧, 江娃利, 谢新生 . 1976年唐山Ms7.8地震乐亭—滦南地区NW向地裂缝带赵滩点位调查[J]. 地震学报, 2016,38(4):644-655.
[2] Guo H, Jiang W L, Xie X S . Investigation on Zhaotan site in NW-trending ground fissure zone of 1976 Ms7.8 Tangshan earthquake in Laoting-Luannan region[J]. Acta Seismologica Sinica, 2016,38(4):644-655.
[3] 徐锡伟, 闻学泽, 叶建青 , 等. 汶川Ms8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008,30(3):597-629.
[3] Xu X W, Wen X Z, Ye J Q , et al. The Ms8.0 Wenchuan earth-quake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 2008,30(3):597-629.
[4] 张建毅, 薄景山, 袁一凡 , 等. 活动断层及其避让距离研究综述[J]. 自然灾害学报, 2012,21(2):9-18.
[4] Zhang J Y, Bo J S, Yuan Y F , et al. Review of research on active fault and its setback[J]. Journal of Natural Disasters, 2012,21(2):9-18.
[5] 谢广林 . 中国活动断裂遥感信息分析[M]. 北京: 地震出版社, 2000, 1-18.
[5] Xie G L , Remote sensing information analysis of active faults in China[M]. Beijing: Seismological Press, 2000, 1-18.
[6] 邓起东 . 活动断层的研究进展与方向[M] //国家地震局地质研究所.活动断层研究(1).北京: 地震出版社, 1991, 1-6.
[6] Deng Q D. Research progress and direction of active faults[M] //Institute of Geology, China Earthquake Administration.Research of Active Faults(1).Beijing:Seismological Press, 1991, 1-6.
[7] 赵福岳, 张瑞江, 陈华 , 等. 青藏高原隆升的生态地质环境响应遥感研究[J]. 国土资源遥感, 2012,24(3):116-121.doi: 10.6046/gtzyyg.2012.03.21.
doi: 10.6046/gtzyyg.2012.03.21 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201203021
[7] Zhao F Y, Zhang R J, Chen H , et al. Study of Qinghai-Tibet Plateau uplift response to eco-geological environment based on remote sensing[J]. Remote Sensing for Land and Resources, 2012,24(3):116-121.doi: 10.6046/gtzyyg.2012.03.21.
[8] 朱菲菲 . 雅鲁藏布江中游谢通门南北向活动断层带特征及工程效应研究[D]. 成都:成都理工大学, 2008.
[8] Zhu F F . The research of the North-South active fault belt in Xiatongmoin in the middle reaches of the Yarlung Zangbo River and effection engineering[D]. Chengdu:Chengdu University of Technology, 2008.
[9] 王瑜, 李齐, 万景林 , 等. 西藏南部地区南北向构造的形成及动力学探讨[J]. 地震地质, 2000,22:117-124.
[9] Wang Y, Li Q, Wan J L , et al. Formation and dynamic analysis of NS trending structures in southern Tibet[J]. Seismology and Geology, 2000,22:117-124.
[10] Yin A . Cenozoic tectonic evolution of Asia:A preliminary synjournal[J]. Tectonophysics, 2010,488(1):293-325.
doi: 10.1016/j.tecto.2009.06.002 url: http://linkinghub.elsevier.com/retrieve/pii/S0040195109003217
[11] 潘桂棠, 丁俊, 姚东生 , 等. 青藏高原及邻区地质图说明书(1∶1 500 000)[M]. 成都: 成都地图出版社, 2004: 1-47.
[11] Pan G T, Ding J, Yao D S , et al. Instructions of the Qinghai-Tibet Plateau and Adjacent Area Geological Map(1∶1 500 000)[M]. Chengdu: Chengdu Cartographic Publishing House, 2004: 1-47.
[12] 刘智荣, 黄静宜, 白相东 . 银川活动断层卫星遥感图像解译[J]. 防灾科技学院学报, 2012,14(1):17-25.
doi: 10.3969/j.issn.1673-8047.2012.01.004 url: http://d.wanfangdata.com.cn/Periodical/fzjsgdzkxxxb201201004
[12] Liu Z R, Huang J Y, Bai X D , Interpretation and analysis of the Yinchuan active faults based on satellite remote sensing images[J]. Journal of Institute of Disaster Prevention, 2012,14(1):17-25.
[13] 郑文俊, 郭华, 袁道阳 , 等. 遥感影像信息在活动断层研究中的应用[J]. 高原地震, 2002,14(2), 15-21.
doi: 10.3969/j.issn.1005-586X.2002.02.003 url: http://d.wanfangdata.com.cn/Periodical/gydz200202003
[13] Zheng W J, Guo H, Yuan D Y , et al. Application of remote sensing image information in the research of active faults[J]. Earthquake Research in Plateau, 2002,14(2), 15-21.
[14] 张景发, 姜文亮, 田甜 , 等. 活动断层调查中的高分辨率遥感技术应用方法研究[J]. 地震学报, 2016,38(3):386-398.
doi: 10.11939/jass.2016.03.006 url: http://d.wanfangdata.com.cn/Periodical/dizhen201603006
[14] Zhang J F, Jiang W L, Tian T , et al. High resolution remote sensing application research in active fault surveying[J]. Acta Seismologica Sinica, 2016,38(3):386-398.
[15] 张培震, 王琪, 马宗晋 . 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘, 2002,9(2):430-441.
[15] Zhang P Z, Wang Q, Ma Z J . GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 2002,9(2):430-441.
[16] 刘小汉, 琚宜太, 韦利杰 , 等. 再论雅鲁藏布江缝合带构造模型[J]. 中国科学( D辑), 2009,39(4):448-463.
[16] Liu X H, Qu Y T, Wei L J , et al. The discussion again of Yarlung Zangbo Suture Zone’s structural model[J]. Science China Earth Sciences, 2009,39(4):448-463.
[17] 贺日政, 高锐 . 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 2003,18(1):35-43.
doi: 10.3969/j.issn.1004-2903.2003.01.006 url: http://d.wanfangdata.com.cn/Periodical/dqwlxjz200301006
[17] He R Z, Gao R . Some significances of studying north-southern rift in Tibet Plateau[J]. Progress in Geophysics, 2003,18(1):35-43.
[18] 吴珍汉, 叶培盛, 吴中海 , 等. 青藏铁路沿线断裂活动的灾害效应[J]. 现代地质, 2003,17(1):1-7.
doi: 10.3969/j.issn.1000-8527.2003.01.001 url: http://d.wanfangdata.com.cn/Periodical/xddz200301001
[18] Wu Z H, Ye P S, Wu Z H , et al. Hazard effects of active faulting along the Golmud-Lhasa railway across the Tibetan Plateau[J]. Geoscience, 2003,17(1):1-7.
[1] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[2] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[3] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[4] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[5] LIU Xinxing, CHEN Jianping, ZENG Min, DAI Jingjing, PEI Yingru, REN Mengyi, WANG Na. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
[6] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[7] LI Feng, GAO Zhao-Liang. A Hybrid Bayesian Network Classifier for Multi-source Remote Sensing Data in Land Use Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech