Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (3) : 154-160     DOI: 10.6046/gtzyyg.2015.03.24
Technology Application |
Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data
LIU Xinxing1,2, CHEN Jianping1, ZENG Min3, DAI Jingjing2, PEI Yingru1,2, REN Mengyi1, WANG Na4
1. School of the Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
4. Institnte of China Geological Environment Monitoring, Beijing 100081, China
Download: PDF(13009 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Usually remote sensing data are set corresponding parameters to solve specific problems such as resource and environment; nevertheless, the geological structures from the regional scale to the hand specimen are divided into different scales, and hence a single kind of remote sensing data cannot meet the multi-scale geological structure interpretation. To solve this problem, the authors took Qiangduo area in Tibet as the study area, utilized the advantages of ETM+,ASTER, WorldView2 and DEM data of the study area to interpret the geological structures at two different levels from ETM+ data with 30 m resolution and ASTER data with 15 m resolution to WorldView2 data with 0.5 m resolution, and obtained a good result. Firstly, the interpretation of structural framework from ETM+ data was carried out by interpretation keys. At the same time, the ASTER band calculation was used to indirectly reflect structural information which could verify the results of the ETM+. Furthermore, the high spatial resolution WorldView2 data were integrated to analyze the structure. Finally, on the basis of the field validation, the interpretation results were revised. The geological structure interpretation results of Qiangduo area show that the integrated application of multi-source remote sensing data can improve the accuracy of structure interpretation and achieve a good practical application effect in a short period of time.
Keywords algae bloom      sub-pixel      low-resolution      remote sensing     
:  TP753  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Chuanqing
YIN Shoujing
ZHU Li
MA Wandong
WU Di
Cite this article:   
WU Chuanqing,YIN Shoujing,ZHU Li, et al. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.03.24     OR     https://www.gtzyyg.com/EN/Y2015/V27/I3/154
[1] 郝敏,吴虹,贾志强,等.基于断裂构造遥感影像特征对比分析的花山岩体与姑婆山岩体成因关联性探讨[J].国土资源遥感,2014,26(2):162-169.doi:10.6046/gtzyyg.2014.02.26. Hao M,Wu H,Jia Z Q,et al.Discussion on genetic correlation between Huashan granite body and Guposhan granite body based on comparative analysis of fault structure features in remote sensing image[J].Remote Sensing for Land and Resources,2014,26(2):162-169.doi:10.6046/gtzyyg.2014.02.26.
[2] 钟江文,彭翼.小秦岭地区遥感线性构造密集带与金矿关系分析及找矿预测[J].国土资源遥感,2014,26(2):148-153.doi:10.6046/gtzyyg.2014.02.24. Zhong J W,Peng Y.Analysis of relationship between belts of concentrated remote sensing linear structures and gold deposits as well as prospecting prognosis in Xiaoqinling region[J].Remote Sensing for Land and Resources,2014,26(2):148-153.doi:10.6046/gtzyyg.2014.02.24.
[3] 潘桂棠,丁俊,姚东生,等.青藏高原及邻区地质图说明书[M].成都:成都地图出版社,2004:1-47. Pan G T,Ding J,Yao D S,et al.Instructions of the Qinghai-Tibet Plateau and Adjacent Area Geological Map[M].Chengdu:Chengdu Cartographic Publishing House,2004:1-47.
[4] 耿全如,彭智敏,张璋,等.班公湖-怒江成矿带及临区特提斯演化与成矿地质背景[M].北京:地质出版社,2012. Geng Q R,Peng Z M,Zhang Z,et al.Bangong-Nujiang Metallogenic Belt and the Pro Tethyan Evolution and Geological Background[M].Beijing:Geological Publishing House,2012.
[5] 江西省地质调查研究院.羌多幅I44C003003 1:25万区域地质调查报告[R].南昌:江西省地质调查研究院,2005. Jiangxi Institute of Geological Survey.1:250 000 Qiangduo Area Geological Survey Report[R].Nanchang:Jiangxi Institute of Geological Survey,2005.
[6] 张玉修.班公湖-怒江缝合带中西段构造演化[D].北京:中国科学院研究生院,2007. Zhang Y X.Tectonic Evolution of the Middle-Western Bangong-Nujiang Suture,Tibet[D].Beijing:Chinese Academy of Sciences,2007.
[7] 任纪舜,肖黎薇.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J].地质通报,2004,23(1):1-11. Ren J S,Xiao L W.Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250 000 geological mapping[J].Geological Bulletin of China,2004,23(1):1-11.
[8] Yin A.Cenozoic tectonic evolution of Asia:A preliminary synthesis[J].Tectonophysics,2010,488(1/4):293-325.
[9] Bilotti F,Shaw J H,Brennan P A.Quantitative structural analysis with stereoscopic remote sensing imagery[J].AAPG Bulletin,2000,84(6):727-740.
[10] 朱亮璞.遥感地质学[M].北京:地质出版社,2009. Zhu L P.Remote Sensing Geology[M].Beijing:Geological Publishing House,2009.
[11] 张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,14(4):30-36.doi:10.6046/gtzyyg.2002.04.07. Zhang Y J,Yang J M,Chen W.A study of the method for extraction of alteration anomalies from the ETM+ data and its application:Geologic basis and spectral precondition[J].Remote Sensing for Land and Resources,2002,14(4):30-36.doi:10.6046/gtzyyg.2002.04.07.
[12] 杨金中,方洪宾,张玉君,等.中国西部重要成矿带遥感找矿异常提取的方法研究[J].国土资源遥感,2003,15(3):50-53.doi:10.6046/gtzyyg.2003.03.12. Yang J Z,Fang H B,Zhang Y J,et al.Remote sensing anomaly extraction in important metallogenic belts of western China[J].Remote Sensing for Land and Resources,2003,15(3):50-53.doi:10.6046/gtzyyg.2003.03.12.
[13] 杨金中.多光谱遥感异常提取技术方法体系研究[J].国土资源遥感,2007,19(4):43-46.doi:10.6046/gtzyyg.2007.04.09. Yang J Z.The technical system of multispectral remote sensing anomaly extraction[J].Remote Sensing for Land and Resources,2007,19(4):43-46.doi:10.6046/gtzyyg.2007.04.09.
[14] 楼性满,葛榜军.遥感找矿预测方法[M].北京:地质出版社,1994. Lou X M,Ge B J.Remote Sensing Prospecting Prediction Method[M].Beijing:Geological Publishing House,1994.
[15] 陈建平,胡崇金.利用岩层三角面图解计算产状的新方法[J].成都地质学院学报,1991,18(2):121-125. Chen J P,Hu C J.Mapping-calculating method of attitude with geological triangular facets[J].Journal of Chengdu Institute of Geology,1991,18(2):121-125.
[16] 陈建平,苗放.利用航空立体像对确定岩层产状的计算机方法[J].国土资源遥感,1991,3(4):40-45.doi:10.6046/gtzyyg.1991.04.06. Chen J P,Miao F.The calculating method for layer attitude with airphoto pair[J].Remote Sensing for Land and Resources,1991,3(4):40-45.doi:10.6046/gtzyyg.1991.04.06.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech