|
|
|
|
|
|
Morphological features and spatial distribution of the lunar Copernican secondary craters |
Ke ZHANG1,2, Jianzhong LIU1,2( ), Weiming CHENG2,3 |
1.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract Lunar secondary crater, a kind of geological feature that is easily confused with the primary craters on the Moon, can introduce significant errors in lunar dating. However, it can be used to determine the impact direction of the primary crater, so it is important to identify secondary craters. In this paper, based on remote sensing data and topography data, comprehensive consideration of the spatial location and diameter of the lunar primary crater, the authors selected five typical Copernican primary craters to study the quantitative morphological indices so as to characterize their secondary craters, including depth-diameter ratio, rim height-diameter ratio, irregularity, and ellipticity. On such a basis, the intelligent identification, extraction and spatial distribution of secondary craters were studied. As a result, a total of 17 811 secondary craters were detected, from which a geodatabase was established that included five categories according to location, size, morphological indices, distance, and impact direction of secondary craters. The scale and distribution characteristics of secondary craters were studied based on the distance range from primary crater edge. A new method based on secondary crater major axis was developed. Some conclusions have been reached: ① As for craters size, the lunar mare secondary crater diameter is (2.7±0.11)% of its primary crater diameter, the lunar highland secondary crater diameter is (3±0.3)% of its primary crater diameter. The spatial distribution law is consistent between lunar highland and lunar mare. The secondary distribution distance is (57±7)% of the maximum distribution distance. ②The impact direction of the Tycho crater is W-E. The impact directions of the Copernicus crater and the Kepler crater are SE-NW. The impact directions of the Aristarchus crater and the Jackson crater are NW-SE. This study will be helpful for more accurate study of crater impact direction.
|
Keywords
secondary crater
Copernican
morphology index
secondary crater geodatabase
spatial distribution
impact direction
|
|
Corresponding Authors:
Jianzhong LIU
E-mail: liujianzhong@mail.gyig.ac.cn
|
Issue Date: 14 March 2019
|
|
|
[1] |
Arvidson R E, Chapman C, Moore H , et al. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 1979,37(2):467-474.
doi: 10.1016/0019-1035(79)90009-5
url: http://linkinghub.elsevier.com/retrieve/pii/0019103579900095
|
[2] |
Anderson R B, Bell J F I . Geologic mapping and characterization of Gale crater and implications for its potential as a Mars science laboratory landing site[J]. International Journal of Mars Science and Exploration, 2010,5:76-128.
doi: 10.1555/mars.2010.0004
url: http://adsabs.harvard.edu/abs/2009AGUFM.P43D1459A
|
[3] |
Bierhaus E B, Chapman C R, Merline W J . Secondary craters on Europa and implications for cratered surfaces[J]. Nature, 2005,437:1125-1127.
doi: 10.1038/nature04069
pmid: 16237437
url: http://www.nature.com/articles/nature04069
|
[4] |
Dundas C M, McEwen A S . Rays and secondary craters of Tycho[J]. Icarus, 2007,186(1):31-40.
doi: 10.1016/j.icarus.2006.08.011
url: https://linkinghub.elsevier.com/retrieve/pii/S0019103506002788
|
[5] |
Hartmann W K, Neukum G . Cratering chronology and evolution of Mars[J]. Space Science Reviews, 2001,96(1-4):165-194.
doi: 10.1007/978-94-017-1035-0_6
url: http://link.springer.com/10.1023/A:1011945222010
|
[6] |
Kumar P S, Kumar A S, Keerthi V , et al. Chandrayaan-1 observation of distant secondary craters of Copernicus exhibiting central mound morphology:Evidence for low velocity clustered impacts on the Moon[J]. Planetary and Space Science, 2011,59(9):870-879.
doi: 10.1016/j.pss.2011.04.004
url: https://linkinghub.elsevier.com/retrieve/pii/S0032063311001139
|
[7] |
McEwen A S, Bierhaus E B . The importance of secondary cratering to age constraints on planetary surfaces[J]. Annual Review of Earth and Planetary Sciences, 2006,34(1):535-567.
doi: 10.1146/annurev.earth.34.031405.125018
url: http://www.annualreviews.org/doi/10.1146/annurev.earth.34.031405.125018
|
[8] |
Pike R J, Wilhelms D E. Secondary-impact craters on the Moon:Topographic form and geologic process[C]// Lunar and Planetary Science Conference. Houston, 1978,9:907-909.
|
[9] |
Robbins S J, Hynek B M . Distant secondary craters from Lyot crater,Mars,and implication for surface ages for surface ages of planetary bodies[J]. International Journal of Remote Sensing, 2011,27(8):1677-1690.
doi: 10.1080/01431160500406896
url: http://onlinelibrary.wiley.com/doi/10.1029/2010GL046450/full
|
[10] |
Oberbeck V R, Morrison R H. The secondary crater Herringbone pattern[C]// Lunar and Planetary Science Conference.Texas, 1973,4:570-571.
|
[11] |
Oberbeck V R, Morrison R H . Laboratory simulation of the herringbone pattern associated with lunar secondary crater chains[J]. Moon, 1974,9(3-4):415-455.
doi: 10.1007/BF00562581
url: http://link.springer.com/10.1007/BF00562581
|
[12] |
Shoemaker E M. Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum[C]// Hess W N, Menzel D H, O’Keefe J A. The Nature of the Lunar Surface. Baltimore: Johns Hopkins Press, 1965,2:33-77.
|
[13] |
Bart G D, Melosh H J . Using lunar boulders to distinguish primary from distant secondary impact craters[J]. Geophysical Research Letters, 2007,34(7):1-5.
doi: 10.1029/2007GL030402
url: http://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007GL029306
|
[14] |
McEwen A S, Preblich B S, Turtle E P , et al. The rayed crater Zunil and interpretations of small impact craters on Mars[J]. Icarus, 2005,176(2):351-381.
doi: 10.1016/j.icarus.2005.02.009
url: https://linkinghub.elsevier.com/retrieve/pii/S0019103505000588
|
[15] |
Wells K S, Campbell D B, Campbell B A , et al. Detection of small lunar secondary craters in circular polarization ratio Radar images[J]. Journal of Geophysical Research, 2010,115(e6):258-273.
doi: 10.1029/2009JE003491
url: http://onlinelibrary.wiley.com/doi/10.1029/2009JE003491/full
|
[16] |
Honda C, Kinoshita T, Hirata N, et al. Detection abilities of secondary craters based on the clustering analysis and Voronoi diagram[C]// European Planetary Science Congress.Portugal, 2014,9:119.
|
[17] |
Boyed A K, Robinson M S, Sato H. Lunar reconnaissance orbiter wide angle camera photometry:An empirical solution[C]// 43rd Lunar and Planetary Science Conference.Texas, 2012,43:2795.
|
[18] |
Hartmann W K . Does crater "saturation equilibrium" occur in the solar system?[J]. Icarus, 1984,60(1):56-74.
doi: 10.1016/0019-1035(84)90138-6
url: http://linkinghub.elsevier.com/retrieve/pii/0019103584901386
|
[19] |
Hartmann W K, Berman D C, Betts B H . Landing site studies using high resolution MGS crater counts and Phobos-2 Termoskan data[J]. Second Mars Surveyor Landing Site Workshop, 1999: 55.
url: http://adsabs.harvard.edu/abs/1999msls.work...55H
|
[20] |
Chapman C R, Mckinnon W B. Cratering of planetary satellites[M] // Burns J A, Matthews M S. Satellites.Tucson: University of Arizona Press, 1986: 492-580.
|
[21] |
Allen C C . Large lunar secondary craters:Size-range relationships[J]. Geophysical Research Letters, 1979,6(1):51-54.
doi: 10.1029/GL006i001p00051
url: http://doi.wiley.com/10.1029/GL006i001p00051
|
[22] |
Melosh H J. Impact Cratering:A Geologic Process[M]. New York: Oxford University Press, 1989.
|
[23] |
Schultz P H, Singer J. A comparison of secondary craters on the Moon,Mercury,and Mars[C]// Lunar and Planetary Science Conference Proceedings.Texas, 1980,11:2243-2259.
|
[24] |
Zhou S Z, Xiao Z Y, Zeng Z X . Impact craters with circular and isolated secondary craters on the continuous secondaries facies on the Moon[J]. Journal of Earth Science, 2015,26(5):740-745.
doi: 10.1007/s12583-015-0579-y
url: http://link.springer.com/10.1007/s12583-015-0579-y
|
[25] |
Calef III F J, Herrick R R, Sharpton V L . Geomorphic analysis of small rayed craters on Mars:Examining primary versus secondary impacts[J]. Journal of Geophysical Research, 2009,114(e10):538-549.
doi: 10.1029/2008JE003283
url: http://onlinelibrary.wiley.com/doi/10.1029/2008JE003283/full
|
[26] |
Guo D J, Liu J Z, Head J W. Spatial distribution and geometrics of orientale secondary crater[C]// Lunar and Planetary Science Conference.Texas, 2017,2560.
|
[27] |
Nagumo K, Nakamura A M . Reconsideration of crater size-frequency distribution on the Moon:Effect of projectile population and secondary craters[J]. Advances in Space Research, 2001,28(8):1181-1186.
doi: 10.1016/S0273-1177(01)00488-4
url: http://linkinghub.elsevier.com/retrieve/pii/S0273117701004884
|
[28] |
Moutsoulas M, Preka P . Morphological characteristics of lunar craters with moderate depth/diameter ratio.II-d/D between 0.12 and 0.15[J]. Moon and the Planets, 1981,25(1):51-66.
doi: 10.1007/BF00911808
url: http://link.springer.com/10.1007/BF00911808
|
[29] |
Basilevsky A T, Kozlova N A, Zavyalov I Y , et al. Morphometric studies of the Copernicus and Tycho secondary craters on the Moon:Dependence of crater degradation rate on crater size[J]. Planetary and Space Science, 2017: 1-10.
|
[30] |
Grant J A, Arvidson R E, Crumpler L S , et al. Crater gradation in Gusev crater and Meridiani Planum,Mars[J]. Journal of Geophysical Research Planets, 2006,111(e2):516-531.
doi: 10.1029/2005JE002465
url: http://onlinelibrary.wiley.com/doi/10.1029/2005JE002465/pdf
|
[31] |
Pike R J . Crater dimensions from Apollo data and supplemental sources[J]. Moon, 1976,15(3-4):463-477.
doi: 10.1007/BF00562253
url: http://link.springer.com/10.1007/BF00562253
|
[32] |
Watters W A, Collins G S, Hundal C, et al. Dependence of secondary crater shape on impact velocity[C]// 79th Annual Meeting of the Meteoritical Society.Berlin, 2016,1921:6502.
|
[33] |
Pike R J . Geometric Interpretation of Lunar Craters[M]. Washington:Washington U.S.Government Printing Office, 1980.
|
[34] |
Schenk P M, Ridolfi F J . Morphology and scaling of ejecta deposits on Icy satellites[J]. Geophysical Research Letters, 2002,29(12):1-4.
doi: 10.1029/2001GL013512
url: http://onlinelibrary.wiley.com/doi/10.1029/2001GL013512/full
|
[35] |
Bierhaus E B, Dones L, Alvarellos J L , et al. The role of ejecta in the small crater populations on the mid-sized saturnian satellites[J]. Icarus, 2011,218(1):602-621.
doi: 10.1016/j.icarus.2011.12.011
url: http://www.sciencedirect.com/science/article/pii/S0019103511004842
|
[36] |
Nyquist L E, Bogard D D, Shih C Y , et al. Ages and geologic histories of Martian meteorites[J]. Space Science Reviews, 2001,96(1-4):105-164.
doi: 10.1023/A:1011993105172
url: http://link.springer.com/10.1023/A:1011993105172
|
[37] |
Poelchau M H, Kenkmann T . Asymmetric signatures in simple craters as an indicator for an oblique impact direction[J]. Meteorisics and Planetary Science, 2010,43(12):2059-2072.
doi: 10.1111/j.1945-5100.2008.tb00661.x
url: http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2008.tb00661.x/full
|
[38] |
Tsikalas F . Mjølnir Crater as a Result of Oblique Impact:Asymmetry Evidence Constrains Impact Direction and Angle[M]. Springer Berlin Heidelberg, 2005: 285-306.
|
[39] |
Wallis D, Burchell M J, Cook A C , et al. Azimuthal impact directions from oblique impact crater morphology[J]. Monthly Notices of the Royal Astronomical Society, 2005,359(3):1137-1149.
doi: 10.1111/mnr.2005.359.issue-3
url: http://blackwell-synergy.com/doi/abs/10.1111/mnr.2005.359.issue-3
|
[40] |
Shkuratov Y, Kaydash V, Rohacheva L , et al. Comparison of lunar red spots including the crater copernicus[J]. Icarus, 2016,272:125-139.
doi: 10.1016/j.icarus.2016.02.034
url: https://linkinghub.elsevier.com/retrieve/pii/S0019103516001123
|
[41] |
Hirata N, Haruyama J, Ohtake M, et al. Morphological analyses of Tycho crater with Kaguya data[C]// Lunar and Planetary Science Conference.Texas, 2009,1514.
|
[42] |
Hirata N, Haruyama J, Ohtake M, et al. Remote sensing study of a large lunar crater Jackson[C]// 41st Lunar and Planetary Science Conference.Texas, 2010,1533:1585.
|
[43] |
Mustard J F, Pieters C M, Isaacson P J , et al. Compositional diversity and geologic insights of the Aristarchus crater from Moon mineralogy mapper data[J]. Journal of Geophysical Research Planets, 2011,116(e6):0-12.
doi: 10.1029/2010JE003726
url: http://onlinelibrary.wiley.com/doi/10.1029/2010JE003726/abstract
|
[44] |
Öhman T, Kring D A . Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions[J]. Journal of Geophysical Research, 2012,117(e12):295-306.
doi: 10.1029/2011JE003918
url: http://onlinelibrary.wiley.com/doi/10.1029/2011JE003918/pdf
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|