Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 255-263     DOI: 10.6046/gtzyyg.2019.01.33
|
Morphological features and spatial distribution of the lunar Copernican secondary craters
Ke ZHANG1,2, Jianzhong LIU1,2(), Weiming CHENG2,3
1.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(5571 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Lunar secondary crater, a kind of geological feature that is easily confused with the primary craters on the Moon, can introduce significant errors in lunar dating. However, it can be used to determine the impact direction of the primary crater, so it is important to identify secondary craters. In this paper, based on remote sensing data and topography data, comprehensive consideration of the spatial location and diameter of the lunar primary crater, the authors selected five typical Copernican primary craters to study the quantitative morphological indices so as to characterize their secondary craters, including depth-diameter ratio, rim height-diameter ratio, irregularity, and ellipticity. On such a basis, the intelligent identification, extraction and spatial distribution of secondary craters were studied. As a result, a total of 17 811 secondary craters were detected, from which a geodatabase was established that included five categories according to location, size, morphological indices, distance, and impact direction of secondary craters. The scale and distribution characteristics of secondary craters were studied based on the distance range from primary crater edge. A new method based on secondary crater major axis was developed. Some conclusions have been reached: ① As for craters size, the lunar mare secondary crater diameter is (2.7±0.11)% of its primary crater diameter, the lunar highland secondary crater diameter is (3±0.3)% of its primary crater diameter. The spatial distribution law is consistent between lunar highland and lunar mare. The secondary distribution distance is (57±7)% of the maximum distribution distance. ②The impact direction of the Tycho crater is W-E. The impact directions of the Copernicus crater and the Kepler crater are SE-NW. The impact directions of the Aristarchus crater and the Jackson crater are NW-SE. This study will be helpful for more accurate study of crater impact direction.

Keywords secondary crater      Copernican      morphology index      secondary crater geodatabase      spatial distribution      impact direction     
:  TP79P691  
Corresponding Authors: Jianzhong LIU     E-mail: liujianzhong@mail.gyig.ac.cn
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ke ZHANG
Jianzhong LIU
Weiming CHENG
Cite this article:   
Ke ZHANG,Jianzhong LIU,Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters[J]. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.33     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/255
参数 Copernicus撞击坑 Tycho撞击坑 Jackson撞击坑 Aristarchus撞击坑 Kepler撞击坑
经度 20°W 11.2°W 163.1°W 47.4°W 38°W
纬度 9.7°N 43.3°S 22.4°N 23.7°N 8.1°N
年代/Ma 800±40 109±4 80150 450 625950
直径/km 93 86 71 40 32
空间位置 位于风暴洋的中东部,雨海的南边,靠近月球赤道地区 位于月球正面南纬45°S的南部山地 位于月球背面的北半球 位于风暴洋的中部,月球正面的中低纬度地区 位于风暴洋和岛海之间,月球正面的北东侧
Tab.1  Five typical Copernican primary craters and their characteristics
Fig.1  Spatial locations of the five Copernican lunar primary craters and the maximum distribution range of their secondary craters
指标参数 用途 公式
不规则度(Γ) 分析坑缘不规则的程度 Γ=P2πA 
椭圆度(ei) 坑缘的延展程度 ei=π(L/2)2A
深径比(t) 分析次级坑的深浅程度 t=HD
坑缘高度与直径比(y) 撞击坑隆起高度 y=hD
Tab.2  Morphological parameters of the secondary craters
指标参数 研究学者 范围 本文界定范围
不规则度 Zhou 等[24] 1.041.30
Γ≥1.02
Calef 等[25] 1.06±0.05
椭圆度 Guo 等[26] 01.20
ei≥1.20
Nagumo等[27] ≥1.20
深径比 Moutsoulas等[28] 0.120.15
Basilevsky等[29] 0.0250.130
0.07≤t<0.20
Grant等[30] 0.07
Pike[31] 0.1040.173±0.040
坑缘高度与直径比 Watters[32] 0.030.04
Pike[31] 0.020.04 0.02≤y≤0.04
Pike[33] 0.02
Tab.3  Range of morphological parameters used to identify secondary craters
Fig.2  Secondary crater distribution in the distribute range of the secondary craters about the five Copernican primary craters
指标 属性类型 Copernicus次级坑 Tycho次级坑 Jackson次级坑 Aristarchus次级坑 Kepler次级坑
FID 1 1 1 1 1
位置 中心点经度 13.55°N 27.55°S 19.10°N 25.09°N 13.09°N
中心点纬度 29.54°W 22.65°W 166.85°W 41.67°W 35.90°W
大小 面积/km2 2.23 4.48 3.63 0.20 0.59
周长/km 5.74 7.84 7.10 1.67 2.82
直径/km 1.69 2.39 2.15 0.51 0.87
深度/m 275.0 252.0 274.5 73.5 67.0
边缘高度/m 53.40 67.35 59.04 12.16 22.32
主轴长度/km 2.10 3.15 2.63 0.67 1.03
副轴长度/km 1.60 2.16 2.11 0.46 0.76
形状 不规则度 1.080 1.045 1.050 1.042 1.040
椭圆度 1.56 1.74 1.50 1.69 1.42
深径比 0.166 0.105 0.130 0.140 0.080
坑缘高度与
直径比
0.031 0.028 0.027 0.024 0.260
距离 距主坑中心
距离/km
311.10 570.00 139.25 181.20 105.69
方向 主轴方向/° 66.72 -66.76 -25.78 38.03 -62.74
Tab.4  Secondary craters geodatabase attribute
Fig.3  Relationship between the different radius from the main crater rim crest and secondary crater diameter
Fig.4  Relationship of secondary crater number with different secondary crater diameter and distance
Fig.5  Comprehensive interpretation of determining the impact directions
[1] Arvidson R E, Chapman C, Moore H , et al. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 1979,37(2):467-474.
doi: 10.1016/0019-1035(79)90009-5 url: http://linkinghub.elsevier.com/retrieve/pii/0019103579900095
[2] Anderson R B, Bell J F I . Geologic mapping and characterization of Gale crater and implications for its potential as a Mars science laboratory landing site[J]. International Journal of Mars Science and Exploration, 2010,5:76-128.
doi: 10.1555/mars.2010.0004 url: http://adsabs.harvard.edu/abs/2009AGUFM.P43D1459A
[3] Bierhaus E B, Chapman C R, Merline W J . Secondary craters on Europa and implications for cratered surfaces[J]. Nature, 2005,437:1125-1127.
doi: 10.1038/nature04069 pmid: 16237437 url: http://www.nature.com/articles/nature04069
[4] Dundas C M, McEwen A S . Rays and secondary craters of Tycho[J]. Icarus, 2007,186(1):31-40.
doi: 10.1016/j.icarus.2006.08.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0019103506002788
[5] Hartmann W K, Neukum G . Cratering chronology and evolution of Mars[J]. Space Science Reviews, 2001,96(1-4):165-194.
doi: 10.1007/978-94-017-1035-0_6 url: http://link.springer.com/10.1023/A:1011945222010
[6] Kumar P S, Kumar A S, Keerthi V , et al. Chandrayaan-1 observation of distant secondary craters of Copernicus exhibiting central mound morphology:Evidence for low velocity clustered impacts on the Moon[J]. Planetary and Space Science, 2011,59(9):870-879.
doi: 10.1016/j.pss.2011.04.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0032063311001139
[7] McEwen A S, Bierhaus E B . The importance of secondary cratering to age constraints on planetary surfaces[J]. Annual Review of Earth and Planetary Sciences, 2006,34(1):535-567.
doi: 10.1146/annurev.earth.34.031405.125018 url: http://www.annualreviews.org/doi/10.1146/annurev.earth.34.031405.125018
[8] Pike R J, Wilhelms D E. Secondary-impact craters on the Moon:Topographic form and geologic process[C]// Lunar and Planetary Science Conference. Houston, 1978,9:907-909.
[9] Robbins S J, Hynek B M . Distant secondary craters from Lyot crater,Mars,and implication for surface ages for surface ages of planetary bodies[J]. International Journal of Remote Sensing, 2011,27(8):1677-1690.
doi: 10.1080/01431160500406896 url: http://onlinelibrary.wiley.com/doi/10.1029/2010GL046450/full
[10] Oberbeck V R, Morrison R H. The secondary crater Herringbone pattern[C]// Lunar and Planetary Science Conference.Texas, 1973,4:570-571.
[11] Oberbeck V R, Morrison R H . Laboratory simulation of the herringbone pattern associated with lunar secondary crater chains[J]. Moon, 1974,9(3-4):415-455.
doi: 10.1007/BF00562581 url: http://link.springer.com/10.1007/BF00562581
[12] Shoemaker E M. Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum[C]// Hess W N, Menzel D H, O’Keefe J A. The Nature of the Lunar Surface. Baltimore: Johns Hopkins Press, 1965,2:33-77.
[13] Bart G D, Melosh H J . Using lunar boulders to distinguish primary from distant secondary impact craters[J]. Geophysical Research Letters, 2007,34(7):1-5.
doi: 10.1029/2007GL030402 url: http://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007GL029306
[14] McEwen A S, Preblich B S, Turtle E P , et al. The rayed crater Zunil and interpretations of small impact craters on Mars[J]. Icarus, 2005,176(2):351-381.
doi: 10.1016/j.icarus.2005.02.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0019103505000588
[15] Wells K S, Campbell D B, Campbell B A , et al. Detection of small lunar secondary craters in circular polarization ratio Radar images[J]. Journal of Geophysical Research, 2010,115(e6):258-273.
doi: 10.1029/2009JE003491 url: http://onlinelibrary.wiley.com/doi/10.1029/2009JE003491/full
[16] Honda C, Kinoshita T, Hirata N, et al. Detection abilities of secondary craters based on the clustering analysis and Voronoi diagram[C]// European Planetary Science Congress.Portugal, 2014,9:119.
[17] Boyed A K, Robinson M S, Sato H. Lunar reconnaissance orbiter wide angle camera photometry:An empirical solution[C]// 43rd Lunar and Planetary Science Conference.Texas, 2012,43:2795.
[18] Hartmann W K . Does crater "saturation equilibrium" occur in the solar system?[J]. Icarus, 1984,60(1):56-74.
doi: 10.1016/0019-1035(84)90138-6 url: http://linkinghub.elsevier.com/retrieve/pii/0019103584901386
[19] Hartmann W K, Berman D C, Betts B H . Landing site studies using high resolution MGS crater counts and Phobos-2 Termoskan data[J]. Second Mars Surveyor Landing Site Workshop, 1999: 55.
url: http://adsabs.harvard.edu/abs/1999msls.work...55H
[20] Chapman C R, Mckinnon W B. Cratering of planetary satellites[M] // Burns J A, Matthews M S. Satellites.Tucson: University of Arizona Press, 1986: 492-580.
[21] Allen C C . Large lunar secondary craters:Size-range relationships[J]. Geophysical Research Letters, 1979,6(1):51-54.
doi: 10.1029/GL006i001p00051 url: http://doi.wiley.com/10.1029/GL006i001p00051
[22] Melosh H J. Impact Cratering:A Geologic Process[M]. New York: Oxford University Press, 1989.
[23] Schultz P H, Singer J. A comparison of secondary craters on the Moon,Mercury,and Mars[C]// Lunar and Planetary Science Conference Proceedings.Texas, 1980,11:2243-2259.
[24] Zhou S Z, Xiao Z Y, Zeng Z X . Impact craters with circular and isolated secondary craters on the continuous secondaries facies on the Moon[J]. Journal of Earth Science, 2015,26(5):740-745.
doi: 10.1007/s12583-015-0579-y url: http://link.springer.com/10.1007/s12583-015-0579-y
[25] Calef III F J, Herrick R R, Sharpton V L . Geomorphic analysis of small rayed craters on Mars:Examining primary versus secondary impacts[J]. Journal of Geophysical Research, 2009,114(e10):538-549.
doi: 10.1029/2008JE003283 url: http://onlinelibrary.wiley.com/doi/10.1029/2008JE003283/full
[26] Guo D J, Liu J Z, Head J W. Spatial distribution and geometrics of orientale secondary crater[C]// Lunar and Planetary Science Conference.Texas, 2017,2560.
[27] Nagumo K, Nakamura A M . Reconsideration of crater size-frequency distribution on the Moon:Effect of projectile population and secondary craters[J]. Advances in Space Research, 2001,28(8):1181-1186.
doi: 10.1016/S0273-1177(01)00488-4 url: http://linkinghub.elsevier.com/retrieve/pii/S0273117701004884
[28] Moutsoulas M, Preka P . Morphological characteristics of lunar craters with moderate depth/diameter ratio.II-d/D between 0.12 and 0.15[J]. Moon and the Planets, 1981,25(1):51-66.
doi: 10.1007/BF00911808 url: http://link.springer.com/10.1007/BF00911808
[29] Basilevsky A T, Kozlova N A, Zavyalov I Y , et al. Morphometric studies of the Copernicus and Tycho secondary craters on the Moon:Dependence of crater degradation rate on crater size[J]. Planetary and Space Science, 2017: 1-10.
[30] Grant J A, Arvidson R E, Crumpler L S , et al. Crater gradation in Gusev crater and Meridiani Planum,Mars[J]. Journal of Geophysical Research Planets, 2006,111(e2):516-531.
doi: 10.1029/2005JE002465 url: http://onlinelibrary.wiley.com/doi/10.1029/2005JE002465/pdf
[31] Pike R J . Crater dimensions from Apollo data and supplemental sources[J]. Moon, 1976,15(3-4):463-477.
doi: 10.1007/BF00562253 url: http://link.springer.com/10.1007/BF00562253
[32] Watters W A, Collins G S, Hundal C, et al. Dependence of secondary crater shape on impact velocity[C]// 79th Annual Meeting of the Meteoritical Society.Berlin, 2016,1921:6502.
[33] Pike R J . Geometric Interpretation of Lunar Craters[M]. Washington:Washington U.S.Government Printing Office, 1980.
[34] Schenk P M, Ridolfi F J . Morphology and scaling of ejecta deposits on Icy satellites[J]. Geophysical Research Letters, 2002,29(12):1-4.
doi: 10.1029/2001GL013512 url: http://onlinelibrary.wiley.com/doi/10.1029/2001GL013512/full
[35] Bierhaus E B, Dones L, Alvarellos J L , et al. The role of ejecta in the small crater populations on the mid-sized saturnian satellites[J]. Icarus, 2011,218(1):602-621.
doi: 10.1016/j.icarus.2011.12.011 url: http://www.sciencedirect.com/science/article/pii/S0019103511004842
[36] Nyquist L E, Bogard D D, Shih C Y , et al. Ages and geologic histories of Martian meteorites[J]. Space Science Reviews, 2001,96(1-4):105-164.
doi: 10.1023/A:1011993105172 url: http://link.springer.com/10.1023/A:1011993105172
[37] Poelchau M H, Kenkmann T . Asymmetric signatures in simple craters as an indicator for an oblique impact direction[J]. Meteorisics and Planetary Science, 2010,43(12):2059-2072.
doi: 10.1111/j.1945-5100.2008.tb00661.x url: http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2008.tb00661.x/full
[38] Tsikalas F . Mjølnir Crater as a Result of Oblique Impact:Asymmetry Evidence Constrains Impact Direction and Angle[M]. Springer Berlin Heidelberg, 2005: 285-306.
[39] Wallis D, Burchell M J, Cook A C , et al. Azimuthal impact directions from oblique impact crater morphology[J]. Monthly Notices of the Royal Astronomical Society, 2005,359(3):1137-1149.
doi: 10.1111/mnr.2005.359.issue-3 url: http://blackwell-synergy.com/doi/abs/10.1111/mnr.2005.359.issue-3
[40] Shkuratov Y, Kaydash V, Rohacheva L , et al. Comparison of lunar red spots including the crater copernicus[J]. Icarus, 2016,272:125-139.
doi: 10.1016/j.icarus.2016.02.034 url: https://linkinghub.elsevier.com/retrieve/pii/S0019103516001123
[41] Hirata N, Haruyama J, Ohtake M, et al. Morphological analyses of Tycho crater with Kaguya data[C]// Lunar and Planetary Science Conference.Texas, 2009,1514.
[42] Hirata N, Haruyama J, Ohtake M, et al. Remote sensing study of a large lunar crater Jackson[C]// 41st Lunar and Planetary Science Conference.Texas, 2010,1533:1585.
[43] Mustard J F, Pieters C M, Isaacson P J , et al. Compositional diversity and geologic insights of the Aristarchus crater from Moon mineralogy mapper data[J]. Journal of Geophysical Research Planets, 2011,116(e6):0-12.
doi: 10.1029/2010JE003726 url: http://onlinelibrary.wiley.com/doi/10.1029/2010JE003726/abstract
[44] Öhman T, Kring D A . Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions[J]. Journal of Geophysical Research, 2012,117(e12):295-306.
doi: 10.1029/2011JE003918 url: http://onlinelibrary.wiley.com/doi/10.1029/2011JE003918/pdf
[1] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[2] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[3] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[4] Rui LIU, Xu JIANG, Jing ZHAO, Yunfan LI. GIS based research on the spatial distribution of population density in illegal buildings in Shenzhen City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 233-237.
[5] YAO Zhenhai, QIU Xinfa, SHI Guoping, ZHANG Xiliang. An analysis of spatial distribution characteristics of monthly mean NDVI in the past ten years in China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 181-186.
[6] SHI Yunxia, WANG Fanxia, WU Zhaopeng. Multi-simulation of spatial distribution of land use based on CLUE-S in Jinhe Watershed[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 154-160.
[7] YANG Bin, ZHAN Jinfeng, LI Maojiao. Evaluation of environmental vulnerability in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 138-144.
[8] GUO Zhaocheng, TONG Liqiang, ZHENG Xiongwei, QI Jianwei, WANG Jianchao. Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 99-105.
[9] TONG Liqiang, NIE Hongfeng, LI Jiancun, GUO Zhaocheng. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 104-112.
[10] LIU Dong, LI Yan, KONG Fanhua. Spatial distribution of land surface temperature in central city proper and the cooling of objects effect: A case study of Nanjing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 117-122.
[11] DU Xiao-ya, LU Yue-jin . SPATIAL DISTRIBUTION OF LAND PRICES IN NANJING CITY PROPER AND ITS INFLUENTIAL FACTORS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(2): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech