Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 213-223     DOI: 10.6046/gtzyyg.2018.03.29
|
Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing
Min YANG1,2,3, Guijun YANG2,3,4(), Yanjie WANG2,3,4, Yongfeng ZHANG5, Zhihong ZHANG6, Chenhong SUN7
1. Shaanxi Earthquake Agency, Xi’an 710068, China;
2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3. Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China
4. Beijing Engineering Research Center of Agricultural Internet of Things, Beijing 100097, China
5. Xi’an Zhongtianweidi Surveying & Mapping Technology Co.,Ltd., Xi’an 710054, China;
6. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China;
7. Xi’an Aerospace Tian Painted Data Technology Co., Ltd., Xi’an 710054, China;
Download: PDF(11553 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to study the temporal-spatial variation of the urban heat island effect over Beijing since 1985, the authors utilized the 7 phases of Landsat TM/ETM+/TIRS images in summer to perform retrieval of the land surface brightness temperature so as to replace the true land surface temperature(LST). And the LST data were used for a series of qualitative and quantitative analysis of urban heat island effect to reveal Beijing heat distribution and the characteristics of urban heat island effect. Some conclusions have been reached: ① The high-temperature regions and sub-high temperature regions are continuously centralized to the urban area, but the high-temperature regions in Dongcheng District and Xicheng District show a significant downward trend, and the large scale of heat island is replaced by the small heat islands;② The influence of industrial estate on the urban heat island effect in Beijing is much higher than that of the residential district in Beijing;③ The temperature of the areas with low-rise and dense buildings and low vegetation coverage are much higher than the temperature of the areas with tall and sparse buildings and high vegetation coverage. The results of the study would play an important role in urban planning in that they provide the reference frame for the government departments to reduce the impact of urban heat island effect based on rational planning of the distribution of water, green land,industrial estate and residential areas.

Keywords land surface brightness temperature      land surface temperature(LST)      urban heat island      spatial distribution      temporal and spatial variation      Beijing     
:  TP79  
Corresponding Authors: Guijun YANG     E-mail: yanggj@nercita.org.cn
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Min YANG
Guijun YANG
Yanjie WANG
Yongfeng ZHANG
Zhihong ZHANG
Chenhong SUN
Cite this article:   
Min YANG,Guijun YANG,Yanjie WANG, et al. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.29     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/213
Fig.1  Location of study area
Fig.2  Ideal time of Landsat data acquired
传感器类型 获取日期 空间分辨率/m 时间分
辨率/d
可将光和近
红外波段
热红外
波段
Landsat5 TM 19850718 30 120 16
19910617
19950916
20050725
20110726
Landsat7 ETM+ 20010924 30 60
Landsat8 TIRS 20150824 30 100
Tab.1  Parameters of Landsat data acquired
覆盖类别 LST 1985年 1991年 1995年 2001年 2005年 2011年 2015年 7期平均
水体 最低/K 287.87 290.99 284.80 283.63 293.55 296.20 296.86 290.56
最高/K 302.09 305.36 298.92 300.11 304.34 312.18 307.72 304.39
平均/K 295.19 295.95 292.02 292.07 297.91 299.34 299.75 296.03
面积比例/% 0.57 0.74 0.62 0.73 0.75 0.75 0.68 0.69
高大植被 最低/K 286.45 290.61 284.62 282.90 292.94 293.76 293.74 289.29
最高/K 303.09 308.85 303.76 301.84 308.67 310.90 310.81 306.85
平均/K 295.70 297.69 293.60 293.86 298.73 300.58 301.55 297.39
面积比例/% 22.91 23.79 33.16 27.57 24.45 24.87 6.38 23.30
低矮植被 最低/K 286.50 290.25 287.60 282.38 291.35 294.75 293.10 289.42
最高/K 303.14 308.46 299.34 302.55 305.80 310.59 312.73 306.09
平均/K 295.62 297.08 292.91 293.11 298.29 300.23 302.04 297.04
面积比例/% 30.72 8.06 31.09 18.62 30.88 27.50 35.22 26.01
裸土 最低/K 281.98 291.87 289.32 282.37 293.25 294.69 295.34 289.83
最高/K 305.98 310.11 301.18 306.51 310.28 314.42 315.11 309.08
平均/K 296.84 299.07 294.23 294.68 300.25 302.40 304.25 298.82
面积比例/% 34.67 46.59 14.90 24.13 14.91 11.01 16.09 23.19
不透水面 最低/K 277.24 290.72 283.12 275.15 289.90 292.51 293.86 286.07
最高/K 308.72 315.46 311.19 309.09 313.24 317.51 316.18 313.05
平均/K 298.16 300.65 294.93 295.02 301.22 304.06 305.47 299.93
面积比例/% 11.13 20.82 20.23 28.95 29.02 35.87 41.64 26.81
分类精度 OA/% 96.04 95.98 95.26 92.25 94.07 92.02 93.46 94.16
Kappa 0.95 0.95 0.94 0.90 0.92 0.90 0.92 0.93
Tab.2  Minimum / maximum / average of LST and area ratio for classes of coverage in Landsat images acquired in seven periods
温度分区 所占比例/% 分区范围/%
低温区 24.0 [0,24)
亚低温区 26.0 [24,50)
中温区 23.2 [50,73.2)
亚高温区 25.5 [73.2,98.7)
高温区 1.3 [98.7,100]
Tab.3  Classification of temperature grades based on RPGS method
Fig.3  Distribution of LST grades
Fig.4-1  Evolution of average LST of Landsat image in different stages
Fig.4-2  Evolution of average LST of Landsat image in different stages
Fig.5  Changes in distribution of large shopping malls
Fig.6  Relationship between thermal distribution and factory area as well as residential area
Fig.7  Total energy consumption in 2014
Fig.8  Temperature grades of low-vegetation-covered areas with low-dense of buildings(A)and high-vegetation-covered areas with tall- sparse of buildings(B)
Fig.9  Areas for quantitative study of surface urban heat island effect in 1985
Fig.10  Beijing heat aggregation indicators from 1985 to 2015
[1] 马晓河, 胡拥军 . 中国城镇化进程、面临问题及其总体布局[J].改革, 2010(10):30-45.
[1] Ma X H, Hu Y J . The process,problems and general layout of urbanization in China[J].Reform, 2010(10):30-45.
[2] 王骏飞 . 西(安)咸(阳)新区城市地表温度遥感反演及其变化研究[D]. 重庆:西南大学, 2015.
[2] Wang J F . Research of Xixian New Area Land Surface Temperature Retrieval and Its Changes Based on Remote Sensing Images[D]. Chongqing:Southwest University, 2015.
[3] Li X M, Zhou W Q, Ouyang Z Y . Relationship between land surface temperature and spatial pattern of greenspace:What are the effects of spatial resolution?[J]. Landscape and Urban Planning, 2013,114:1-8.
doi: 10.1016/j.landurbplan.2013.02.005 url: http://linkinghub.elsevier.com/retrieve/pii/S0169204613000261
[4] 刘宇峰, 原志华, 孔伟 , 等. 1993—2012年西安城区城市热岛效应强度变化趋势及影响因素分析[J]. 自然资源学报, 2015,30(6):974-985.
[4] Liu Y F, Yuan Z H, Kong W , et al. The changing trend of heat island intensity and main influencing factors during 1993─2012 in Xi’an City[J]. Journal of Natural Resources, 2015,30(6):974-985.
[5] Yuan F, Bauer M E . Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007,106(3):375-386.
doi: 10.1016/j.rse.2006.09.003 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425706003191
[6] 宋艳玲, 董文杰, 张尚印 , 等. 北京市城、郊气候要素对比研究[J]. 干旱气象, 2003,21(3):63-68.
[6] Song Y L, Dong W J, Zhang S Y , et al. Study on characteristics of climate elements in Beijing[J] Arid Meteorology, 2003,21(3):63-68.
[7] 董妍, 李星敏, 杨艳超 , 等. 西安城市热岛的时空分布特征[J]. 干旱区资源与环境, 2011,25(8):107-112.
url: http://d.wanfangdata.com.cn/Periodical/ghqzyyhj201108019
[7] Dong Y, Li X M, Yang Y C , et al. Distributive characters of urban heat island effect in Xi’an City[J]. Journal of Arid Land Resources and Environment, 2011,25(8):107-112.
[8] Giannaros T M, Melas D, Daglis I A , et al. Numerical study of the urban heat island over Athens (Greece) with the WRF model[J]. Atmospheric Environment, 2013,73:103-111.
doi: 10.1016/j.atmosenv.2013.02.055 url: http://linkinghub.elsevier.com/retrieve/pii/S1352231013001726
[9] Nichol J E, Hang T P . Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,74:153-162.
doi: 10.1016/j.isprsjprs.2012.09.007 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271612001761
[10] 王艳慧, 肖瑶 . 北京市1989—2010年地表温度时空分异特征分析[J]. 国土资源遥感, 2014,26(3):146-152.doi: 10.6046/gtzyyg.2014.03.24.
doi: 10.6046/gtzyyg.2014.03.24
[10] Wang Y H, Xiao Y . A temporal-spatial variation analysis of land surface temperature in Beijing[J]. Remote Sensing for Land and Resources, 2014,26(3):146-152.doi: 10.6046/gtzyyg.2014.03.24.
[11] 纪瑞鹏, 张喜民, 李刚 . 沈阳等6城市热岛效应卫星监测研究[J].辽宁气象, 2000(4):22-23.
[11] Ji R P, Zhang X M, Li G . Study on satellite monitoring of urban heat island effect in 6 cities[J].Liaoning Meteorology, 2000(4):22-23.
[12] Flores R J L, Filho A J P, Karam H A . Estimation of long term low resolution surface urban heat island intensities for tropical cities using MODIS remote sensing data[J]. Urban Climate, 2016,17:32-66.
doi: 10.1016/j.uclim.2016.04.002 url: http://linkinghub.elsevier.com/retrieve/pii/S2212095516300220
[13] 王亚维, 宋小宁, 唐伯惠 , 等. 基于FY-2C数据的地表温度反演验证——以黄河源区玛曲为例[J]. 国土资源遥感, 2015,27(4):68-72.doi: 10.6046/gtzyyg.2015.04.11.
doi: 10.6046/gtzyyg.2015.04.11 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201504011
[13] Wang Y W, Song X N, Tang B H , et al. Validation of FY-2C derived land surface temperature over the source region of the Yellow River:A case study of Maqu County[J]. Remote Sensing for Land and Resources, 2015,27(4):68-72.doi: 10.6046/gtzyyg.2015.04.11.
[14] Bokaie M, Zarkesh M K, Arasteh P D , et al. Assessment of urban heat island based on the relationship between land surface temperature and land use/ land cover in Tehran[J]. Sustainable Cities and Society, 2016,23:94-104.
doi: 10.1016/j.scs.2016.03.009 url: http://linkinghub.elsevier.com/retrieve/pii/S2210670716300403
[15] 宋彩英, 覃志豪, 王斐 . 基于Landsat TM的地表温度分解算法对比[J]. 国土资源遥感, 2015,27(1):172-177.doi: 10.6046/gtzyyg.2015.01.27.
doi: 10.6046/gtzyyg.2015.01.27
[15] Song C Y, Qin Z H, Wang F . Comparison of two models for decomposition of land surface temperature image using Landsat TM data[J]. Remote Sensing for Land and Resources, 2015,27(1):172-177.doi: 10.6046/gtzyyg.2015.01.27.
[16] 李昕瑜, 杜培军, 阿里木·赛买提 .南京市地表参数变化与热岛效应时空分析[J]. 国土资源遥感, 2014,26(2):177-183.doi: 10.6046/gtzyyg.2014.02.28.
doi: 10.6046/gtzyyg.2014.02.28
[16] Li X Y, Du P J, Alim S . Spatial-temporal analysis of urban heat island effect and surface parameters variation in Nanjing City[J]. Remote Sensing for Land and Resources, 2014,26(2):177-183.doi: 10.6046/gtzyyg.2014.02.28.
[17] Gallo K P, Mcnab A L, Karl T R , et al. The use of NOAA AVHRR data for assessment of the urban heat island effect[J]. Journal of Applied Meteorology, 1993,32(5):899-908.
doi: 10.1175/1520-0450(1993)032<0899:TUONAD>2.0.CO;2 url: http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281993%29032%3C0899%3ATUONAD%3E2.0.CO%3B2
[18] Chen W, Zhang Y, Gao W J , et al. The investigation of urbanization and urban heat island in Beijing based on remote sensing[J]. Procedia-Social and Behavioral Sciences, 2016,216:141-150.
doi: 10.1016/j.sbspro.2015.12.019 url: http://linkinghub.elsevier.com/retrieve/pii/S1877042815061996
[19] Mathew A, Khandelwal S, Kaul N . Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature:Study of Chandigarh City,India[J]. Sustainable Cities and Society, 2016,26:264-277.
doi: 10.1016/j.scs.2016.06.018 url: http://linkinghub.elsevier.com/retrieve/pii/S2210670716301287
[20] Shen H F, Huang L W, Zhang L P , et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data:A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016,172:109-125.
doi: 10.1016/j.rse.2015.11.005 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425715301930
[21] 许飞, 张雪红, 李栋 , 等. “白屋顶计划”对缓解城市热岛效应的有效性评价[J]. 国土资源遥感, 2014,26(1):90-96.doi: 10.6046/gtzyyg.2014.01.16.
doi: 10.6046/gtzyyg.2014.01.16
[21] Xu F, Zhang X H, Li D , et al. Evaluation of the “white roof plan” for alleviating heat island effect[J]. Remote Sensing for Land and Resources, 2014,26(1):90-96.doi: 10.6046/gtzyyg.2014.01.16.
[22] Xu L Y, Xie X D, Li S . Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing[J]. Environmental Pollution, 2013,178:102-114.
doi: 10.1016/j.envpol.2013.03.006 url: http://linkinghub.elsevier.com/retrieve/pii/S026974911300122X
[23] Peng J, Xie P, Liu Y X , et al. Urban thermal environment dynamics and associated landscape pattern factors:A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016,173:145-155.
doi: 10.1016/j.rse.2015.11.027 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425715302145
[24] Wang J, Huang B, Fu D J , et al. Response of urban heat island to future urban expansion over the Beijing-Tianjin-Hebei metropolitan area[J]. Applied Geography, 2016,70:26-36.
doi: 10.1016/j.apgeog.2016.02.010 url: http://linkinghub.elsevier.com/retrieve/pii/S014362281630011X
[25] 杨可明, 周玉洁, 齐建伟 , 等. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
doi: 10.6046/gtzyyg.2014.02.22 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201402023
[25] Yang K M, Zhou Y J, Qi J W , et al. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. Remote Sensing for Land and Resources, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
[26] 北京市统计局.人口[EB/OL].( 2015- 11- 09)[2016-12-09]. .
url: http://www.bjstats.gov.cn/tjsj/cysj/201511/t20151109_311727.html
[27] NASA.Landsat 7 Science Data Users Handbook[EB/OL].( 2016 -08)[2016-12-09].
url: https://landsat.gsfc.nasa.gov/wp-content/uploads/2016/08/Landsat7_Handbook.pdf.
[28] 北京市第三次全国经济普查数据可视化系统:主题研究[EB/OL].[ 2016- 12- 09]. .
url: http://gis.bjhgk.gov.cn
[29] 鞠鹏艳 . 转型期的石景山区规划[J].北京规划建设, 2007(2):133-138.
doi: 10.3969/j.issn.1003-627X.2007.02.036 url: http://d.wanfangdata.com.cn/Periodical_bjghjs200702036.aspx
[29] Ju P Y . Planning of Shijingshan District in transitional[J].Beijing Planning Review, 2007(2):133-138.
[1] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
[2] WANG Meiya, XU Hanqiu. A comparative study on the changes in heat island effect in Chinese and foreign megacities[J]. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
[3] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[4] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[5] Wei WANG, Samat Alim, Abuduwaili Jilili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 2019, 31(4): 32-40.
[6] Qi CAO, Manjiang SHI, Liang ZHOU, Ting WANG, Lijun PENG, Shilei ZHENG. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
[7] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[8] Xiaojing ZHANG, Beibei CHEN, Kunchao LEI, Wenfeng CHEN, Mingliang GAO, Chaofan ZHOU, Guangyao DUAN. Characteristics of land subsidence along Beijing-Tianjin inter-city railway (Beijing section)[J]. Remote Sensing for Land & Resources, 2019, 31(1): 171-179.
[9] Ke ZHANG, Jianzhong LIU, Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters[J]. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
[10] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[11] Zhenlan JIANG, Zhenbin GONG, Hui PAN, Baoyu ZHANG, Tingfen WANG. Application of local spatial autocorrelation indices to the delimitation of urban heat island[J]. Remote Sensing for Land & Resources, 2018, 30(3): 136-142.
[12] Jinghu PAN, Leilei DONG, Nayun WANG, Zijin YANG. A multiscale study of thermal environment pattern in Lanzhou-Xining agglomeration[J]. Remote Sensing for Land & Resources, 2018, 30(2): 138-146.
[13] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[14] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[15] Rui LIU, Xu JIANG, Jing ZHAO, Yunfan LI. GIS based research on the spatial distribution of population density in illegal buildings in Shenzhen City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 233-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech