Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 109-114     DOI: 10.6046/gtzyyg.2015.04.17
Technology Application |
Changes of ecological environment in the Dexing copper mine based on TM images
ZHA Dongping1, SHEN Zhan2, LIU Zugen1, LIAO Bing1, WANG Wei1
1. Jiangxi Academy of Environmental Sciences, Nanchang 330029, China;
2. College of Forestry, Beijing Forestry University, Beijing 100083, China
Download: PDF(7583 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The changes of the ecological environment of the Dexing copper mineral resources development area in the past two decades were studied in the aspects of ecosystem structure and ecosystem landscape pattern reflected by the remote sensing images obtained in 1992, 1996, 2000, 2004, 2009 and 2013. According to the results obtained, the development activity in the Dexing copper mining area led to the continuous decrease of forests, grasslands and other natural landscape areas and the unceasing increase of mining field, tailings, field area dump and other artificial landscape areas; regional ecosystem quality became worsen and worsen, the ecosystem fragmentation was aggravated, and the overall performance was towards the increase of the ecosystem mean patch areas and the patch density, together with the decrease of aggregation index. Over the past two decades, mineral resource extraction activities became increasingly intense, the ecosystem damage area was increased year by year, whereas the ecological restoration project for this area was lagging behind.

Keywords airborne LiDAR      calibration of systematic error      bore sight angle      Burman model      stripe adjustment     
:  TP79  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jie
XIAO Chunlei
LI Jing
Cite this article:   
CHEN Jie,XIAO Chunlei,LI Jing. Changes of ecological environment in the Dexing copper mine based on TM images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 109-114.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.17     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/109

[1] 陶建格, 沈镭.矿产资源价值与定价调控机制研究[J].资源科学, 2013, 35(10):1959-1967. Tao J G, Shen L.The value of ore resources and pricing regulation mechanisms[J].Resources Science, 2013, 35(10):1959-1967.

[2] 王晓红, 聂洪峰, 李成尊, 等.不同遥感数据源在矿山开发状况及环境调查中的应用[J].国土资源遥感, 2006, 18(2):69-71.doi:10.6046/gtzyyg.2006.02.17. Wang X H, Nie H F, Li C Z, et al.The application of characteristics of different remote sensing data sources to the investigation of the mining situation and environment of mines[J].Remote Sensing for Land and Resources, 2006, 18(2):69-71.doi:10.6046/gtzyyg.2006.02.17.

[3] 聂洪峰, 杨金中, 王晓红, 等.矿产资源开发遥感监测技术问题与对策研究[J].国土资源遥感, 2007, 16(4):11-13.doi:10.6046/gtzyyg.2007.04.03. Nie H F, Yang J Z, Wang X H, et al.The problems in the remote sensing monitoring technology for the exploration of mineral resources and the countermeasures[J].Remote Sensing for Land and Resources, 2007, 16(4):11-13.doi:10.6046/gtzyyg.2007.04.03.

[4] 李秋元, 郑敏, 王永生.我国矿产资源开发对环境的影响[J].中国矿业, 2002, 11(2):48-51. Li Q Y, Zheng M, Wang Y S.Influences of mineral resource exploitation on environmental quality in China[J].China Mining Magazine, 2002, 11(2):48-51.

[5] 徐田伟.矿产资源开发生态补偿机制初探[J].环境保护与循环经济, 2009, 29(7):58-60. Xu T W.Ecological compensation mechanism for development of mineral resources[J].Environmental Protection and Circular Economy, 2009, 29(7):58-60.

[6] 黎元生, 王文烂, 胡熠.论构建矿产资源开发的生态补偿机制[J].林业经济问题, 2008, 28(3):202-205, 222. Li Y S, Wang W L, Hu Y.Ecological compensation mechanism for mineral resources development[J].Issues of Forestry Economics, 2008, 28(3):202-205, 222.

[7] 李立新, 王兵, 周立波, 等.矿产资源开发生态景观风险评价[J].矿产保护与利用, 2011, 4(2):1-5. Li L X, Wang B, Zhou L B, et al.Ecological landscape risks evaluation in mineral resources exploitation[J].Conservation and Utilization of Mineral Resources, 2011, 4(2):1-5.

[8] 赵祥, 刘素红, 王安建, 等.基于卫星遥感数据的江西德兴铜矿开采环境影响动态监测分析[J].中国环境监测, 2005, 21(2):68-74. Zhao X, Liu S H, Wang A J, et al.Dynamically monitoring and analyzing the environment of Dexing copper-mine based on remotely sensed data[J].Environmental Monitoring in China, 2005, 21(2):68-74.

[9] 于艳梅, 甘甫平, 周萍, 等.基于CBERS-02B星数据的矿山开采环境变化动态监测——以德兴铜矿为例[J].国土资源遥感, 2009, 21(1):74-78.doi:10.6046/gtzyyg.2009.01.16. Yu Y M, Gan F P, Zhou P, et al.The Dynamic monitoring of the exploitation environment based on CBERS-02B satellite:A case study of the Dexing copper mine[J].Remote Sensing for Land and Resources, 2009, 21(1):74-78.doi:10.6046/gtzyyg.2009.01.16.

[10] 杨修, 高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报, 2001, 21(11):1932-1940. Yang X, Gao L.A study on re-vegetation in mining wasteland of Dexing copper mine, China[J].Acta Ecologica Sinica, 2001, 21(11):1932-1940.

[11] 刘圣伟, 甘甫平, 王润生.用卫星高光谱数据提取江西德兴铜矿矿山废水的pH值污染指标[J].地质通报, 2003, 22(11/12):1013-1020. Liu S W, Gan F P, Wang R S.Using Hyperion data to extract pH information of mine waste water in the Dexing copper mine, Jiangxi Province, China[J].Geological Bulletin of China, 2003, 22(11/12):1013-1020.

[12] 赵祥, 刘素红, 王安建, 等.基于卫星遥感数据的江西德兴铜矿开采环境影响动态监测分析[J].中国环境监测, 2005, 21(2):68-73. Zhao X, Liu S H, Wang A J, et al.Dynamically monitoring and analyzing the environment of Dexing Copper-mine based on remotely sensed data[J].Environmental Monitoring in China, 2005, 21(2):68-73.

[13] 环境保护部卫星环境应用中心.全国生态环境十年变化(2000—2010年)遥感调查与评估项目技术指南[S].2013. Satellite Environment Center.The Technical Guide of Remote Sensing Survey and Evaluation for National Environment Ecology Changes of 2000-2010[S].2013.

[14] 马克明, 傅伯杰.北京东灵山地区景观格局及破碎化评价[J].植物生态学报, 2000, 24(3):320-326. Ma K M, Fu B J.Landscape pattern and fragmentation in Donglinshan montane region[J].Acta Phytoecologica Sinica, 2000, 24(3):320-326.

[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[3] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[4] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[5] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[6] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[7] WANG Xue, LI Peijun, JIANG Shasha, LIU Jing, SONG Benqin. Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 106-111.
[8] DONG Baogen, CHE Sen, XIE Longgen, SHAN Guohui, HE Qiao. Mode filter and its application to post-processing of remote sensing classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 62-66.
[9] TANG Feifei, RUAN Zhimin, ZHANG Yali, PENG Li. Automatic detection of change information for buildings based on airborne LiDAR and GIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 57-62.
[10] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[11] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
[12] CHENG Xiao-qian, FAN Liang-xin, ZHAO Hong-qiang. Filtering of Airborne LiDAR Data for Cityscapes Based on Segmentation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 29-32.
[13] WANG Sheng-yao, LIU Sheng-wei, CUI Xi-min, GUO Da-hai, ZHENG Xiong-wei, LU Xiao. Airborne LiDAR Strip Adjustment Research: Based on Model Parameters and Ground Control Points Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 19-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech