Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 205-212     DOI: 10.6046/zrzyyg.2021427
|
Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling
DAI Yunhao1(), GUAN Yao1, FENG Chunyong2, JIANG Min1, HE Xinghong1()
1. College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
2. Department of Geographical Sciences, Beijing Normal University, Beijing 100088, China
Download: PDF(4120 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to explore the optimal remote sensing salinization detection index (SDI) model for the inversion of soil salinization in the Alar reclamation area. Based on Landsat8 OLI remote sensing images and field measured data, this study built the remote sensing SDI models using the salinity index (SI), the normalized difference vegetation index (NDVI), the modified soil adjusted vegetation index (MSAVI), and the surface albedo. Then, using these models, this study extracted the soil salinization information on the Alar reclamation area and verified the model precision. Finally, this study determined the optimal remote sensing-based SDI model through comparative analysis. The results are as follows. The four types of remote sensing-based SDI models SDI1 (SI-NDVI), SDI2 (SI-MSAVI), SDI3 (SI-Albedo), and SDI4 (Albedo-MSAVI)had general classification precision of 83.45%, 69.78%, 53.23%, and 71.94%, respectively. Model SDI1 was the most suitable for the inversion of the degree of soil salinization in the Alar reclamation area. Models SDI2 and SDI4 can be utilized as a reference for soil salinization monitoring of the Alar reclamation area. As revealed by the inversion results of the SDI model, the reclamation area is dominated by non-saline and lightly saline soils, with heavily saline soil and saline soil primarily distributed in the northeast and southeast. Model SDI1 established based on SI and NDVI has high accuracy in extracting the soil salinization information of the Alar reclamation area and can be used as the remote sensing-based SDI model for the inversion of soil salinization in reclamation areas. This study can provide an effective technical reference for the control and prevention of soil salinization.

Keywords spectral index      Alar reclamation area      soil salinization      remote sensing salinity detection index model     
ZTFLH:  TP79  
  S153  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunhao DAI
Yao GUAN
Chunyong FENG
Min JIANG
Xinghong HE
Cite this article:   
Yunhao DAI,Yao GUAN,Chunyong FENG, et al. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling[J]. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021427     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/205
Fig.1  General situation and sampling point distribution of Alar reclamation area
光谱指数 公式 参考文献
NDVI N D V I = N I R - R N I R + R [18]
Albedo Albedo=0.356B+0.130R+0.373NIR+0.085SWIR1+0.072SWIR2-0.0018 [20]
MSAVI M S A V I = ( 2 N I R + 1 ) - ( 2 N I R - 1 ) 2 - 8 ( N I R - R ) 2 [20]
SI S I = B · R [18]
SDI1模型(SI-NDVI) SDI1= ( N D V I - 1 ) 2 + S I 2 [18]
SDI2模型(SI-MSAVI) SDI2= ( M S A V I - 1 ) 2 + S I 2 [19]
SDI3模型(SI-Albedo) SDI3= A l b e d o 2 + S I 2 [28]
SDI4模型(Albedo-MSAVI) SDI4= ( 1 - A l b e d o ) 2 + M S A V I 2 [20???????][28]
Tab.1  Remote sensing spectral index and model
Fig.2  Two dimensional scatter diagram
二维散
点图
光谱指数拟合公式 拟合度
SI-
NDVI
线性: Y=0.942 6-3.063X
二次: Y=1.165 1-6.570X+9.859 7X2
几何: Y=-2.918X0.2594+2.201 5
双曲: Y=1.0/(0.425 2+14.226X)
对数: Y=-0.670 2-1.565lgX-0.297 7lg(X)2
R2=0.867 7
R2=0.929 6
R2=0.915 3
R2=0.872 4

R2=0.916 5
SI-
MSAVI
线性: Y=1.053 5-3.087X
二次: Y=1.198 9-5.384X+6.475 4X2
几何: —
双曲: Y=1.0/(0.550 6+9.570 0X)
对数: Y=-0.834 3-2.241lgX-0.677 6lgX2

R2=0.888 6
R2=0.914 3

R2=0.859 0
R2=0.909 7
SI-
Albedo
线性: Y=0.282 8+0.185 9X
二次: Y=0.363 2-1.085X+3.583 5X2
几何: —
双曲: Y=1.0/(3.556 1-2.169X)
对数: —
R2=0.097 5
R2=0.336 1

R2=0.115 3
Albedo-
MSAVI
线性: Y=0.677 6-0.237 9X
二次: Y=-0.800 5+9.844 8X-16.65X2
几何: Y=0.254 5X-0.064 5+0.3284
双曲: Y=1.0/(1.500 1+0.504 1X)
对数: Y=-1.022-6.013lgX-5.416lgX2

R2=0.001 9
R2=0.050 5
R2=0.000 2
R2=0.001 5
R2=0.033 3
Tab.2  Goodness of fit of two-dimensional scatter diagram model
模型 非盐渍土 轻度盐渍土 中度盐渍土 重度盐渍土 盐土
SDI1 <0.27 [0.27,0.46) [0.46,0.67) [0.67,0.85) ≥0.85
SDI2 <0.21 [0.27,0.40) [0.46,0.62) [0.62,0.80) ≥0.80
SDI3 <0.13 [0.13,0.18) [0.18,0.24) [0.24,0.30) ≥0.30
SDI4 >1.09 [0.97,1.09) [0.85,0.97) [0.74,0.85) ≤0.74
Tab.3  Classification of soil salinization in Alar reclamation area
Fig.3  Distribution of soil salinization grade in Alar Reclamation Area under different models
模型 样点分
类正确
样点分类错误 总体精
度/%
非盐 轻度 中度 重度 盐土 共计
SDI1 116 10 2 6 3 2 23 83.45
SDI2 97 6 6 16 6 8 42 69.78
SDI3 74 35 3 14 6 7 65 53.23
SDI4 100 3 6 18 6 6 39 71.94
Tab.4  Accuracy verification of model sample points
Fig.4  Fitting between model and measured conductivity
Fig.5  Distribution of soil salinization grade in Alar reclamation area in 2011 and 2021
年份 非盐渍土 轻度盐渍土 中度盐渍土 重度盐渍土 盐土
2011年 906.31 524.37 519.46 538.39 787.72
2021年 1116.39 606.86 410.34 506.88 830.03
Tab.5  Statistics of soil salinization area in Alar reclamation area in 2011 and 2021(km2)
[1] 麦麦提吐尔逊·艾则孜. 绿洲土壤盐渍化及水盐调控[M]. 北京: 北京理工大学出版社, 2016.
[1] Aizezi M. Soil salinization and water salt regulation in oasis[M]. Beijing: Beijing University of Technology Press, 2016.
[2] 买买提·沙吾提, 尼格拉·塔什甫拉提, 丁建丽, 等. 干旱区土壤盐渍化遥感监测及评价研究[M]. 北京: 北京理工大学出版社, 2018.
[2] Shatiwu M, Tashenpulati N, Ding J L, et al. Remote sensing monitoring and evaluation of soil salinization in arid areas[M]. Beijing: Beijing University of Technology Press, 2018.
[3] 贾萍萍, 尚天浩, 张俊华, 等. 利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量[J]. 农业工程学报, 2020, 36(17):125-134.
[3] Jia P P, Shang T H, Zhang J H, et al. Inversion of soil salinity in dry and wet seasons based on multi-source spectral data inYinbei area of Ningxia,China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17):125-134.
[4] 虎胆·吐马尔白, 赵永成, 马合木江·艾合买提, 等. 北疆常年膜下滴灌棉田土壤盐分积累特征研究[J]. 灌溉排水学报, 2016, 35(1):1-5.
[4] Tumaerbai H, Zhao Y C, Aihemaiti M, et al. Study on characteristics of cotton field soil salt accumulation under perennialmulched drip irrigation in Northern Xinjiang[J]. Journal of Irrigation and Drainage, 2016, 35(1):1-5.
[5] 吴亚坤, 刘广明, 苏里坦, 等. 多源数据的区域土壤盐渍化精确评估[J]. 光谱学与光谱分析, 2018, 38(11):3528-3533.
[5] Wu Y K, Liu G M, Shu L T, et al. Accurate evaluation of regional soil salinization using multi-source data[J]. Spectroscopy and Spectral Analysis, 2018, 38(11):3528-3533.
[6] Alqasemi A S, Ibrahim M, Al-Quraishi A M F, et al. Detection and modeling of soil salinity variations in arid lands using remote sensing data[J]. Open Geosciences, 2021, 13(1):443-453.
doi: 10.1515/geo-2020-0244 url: https://www.degruyter.com/document/doi/10.1515/geo-2020-0244/html
[7] Sidike A, Zhao S, Wen Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:156-175.
doi: 10.1016/j.jag.2013.06.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243413000743
[8] Wang F, Chen X, Luo G P, et al. Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery[J]. Journal of Arid Land, 2013, 5(3):340-353.
doi: 10.1007/s40333-013-0183-x
[9] 哈学萍, 丁建丽, 等. 基于SI-Albedo特征空间的干旱区盐渍化土壤信息提取研究——以克里雅河流域绿洲为例[J]. 土壤学报, 2009, 46(3):381-390.
[9] Ha X P, Ding J L, et al. SI-ALbedo space based extraction of salinization information in arid area[J]. Journal of Soil, 2009, 46(3):381-390.
[10] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112,113,114.
[10] Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-112,113,114.
[11] 陈实, 高超, 徐斌, 等. 新疆石河子农区土壤含盐量定量反演及其空间格局分析[J]. 地理研究, 2014, 33(11):2135-2144.
doi: 10.11821/dlyj201411013
[11] Chen S, Gao G, Xu B, et al. Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang[J]. Geographical Research, 2014, 33(11):2135-2144.
doi: 10.11821/dlyj201411013
[12] 丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014, 34(16):4620-4631.
[12] Ding J L, Yao Y, Wang F. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16):4620-4631.
[13] 史晓艳, 李维弟, 余露, 等. 玛纳斯河流域农灌区土壤盐渍化遥感定量评价[J]. 灌溉排水学报, 2018, 37(11):69-75,83.
[13] Shi X Y, Li W D, Yu L, et al. Remote sensing quantitative evaluation of soil salinization in agricultural irrigation areas of Manas River Basin[J]. Journal of Irrigation and Drainage, 2018, 37(11):69-75,83.
[14] 丁邦新, 白云岗, 柴仲平, 等. 塔里木河下游绿洲灌区土壤盐渍化特征及季节性变化规律[J]. 水土保持通报, 2020, 40(2):77-84,2.
[14] Ding B X, Bai Y G, Chai Z P, et al. Soil salinization characteristics and its seasonal variation in oasis irrigation district of lower reaches of Tarim River[J]. Bulletin of Soil and Water Conservation, 2020, 40(2):77-84,2.
[15] 杨小虎, 罗艳琴, 杨海昌, 等. 玛纳斯河流域绿洲农田土壤盐分反演及空间分布特征[J]. 干旱区资源与环境, 2021, 35(2):156-161.
[15] Yang X H, Luo Y Q, Yang H C, et al. Soil salinity retrieval and spatial distribution of oasis farmland in Manasi river basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(2):156-161.
[16] 白建铎, 彭杰, 白子金, 等. 干旱区棉田表层土壤盐渍化时空变异研究[J]. 土壤通报, 2021, 52(3):527-534.
[16] Bai J D, Peng J, Bai Z J, et al. Clarifying spatial-temporal variability of surface soil salinization in arid cotton fields[J]. Chinese Journal of Soil Science, 2021, 52(3):527-534.
[17] 陈实, 徐斌, 金云翔, 等. 北疆农区土壤盐渍化遥感监测及其时空特征分析[J]. 地理科学, 2015, 35(12):1607-1615.
doi: 10.13249/j.cnki.sgs.2015.012.1607
[17] Chen S, Xu B, Jin Y X, et al. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of Northern Xinjiang[J]. Science Geographic Science, 2015, 35(12):1607-1615.
[18] 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8):168-173,8.
[18] Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based in NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):168-173,8.
[19] 张添佑, 王玲, 曾攀丽, 等. 基于MSAVI-SI特征空间的玛纳斯河流域灌区土壤盐渍化研究[J]. 干旱区研究, 2016, 33(3):499-505.
[19] Zhang T Y, Wang L, Zeng P L, et al. Soil salinization in the irrigated area of the Manas River Basin based on MSAVI-SI feature space[J]. Arid Zone Research, 2016, 33(3):499-505.
[20] 冯娟, 丁建丽, 魏雯瑜. 基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J]. 中国农村水利水电, 2018(2):147-152.
[20] Feng J, Ding J L, Wei W Y. Remote sensing modeling of soil salinization information in arid areas[J]. Agricultural Research in the Arid Areas, 2018(2):147-152.
[21] 宋奇, 冯春晖, 高琪, 等. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2):202-212.doi:10.6046/gtzyyg.2020183.
doi: 10.6046/gtzyyg.2020183
[21] Song Q, Feng C H, Gao Q, et al. Change of cultivated land and its driving factors in Alar Reclamation Area in the past thirty years[J]. Remote Sensing for Land and Resources, 2021, 33(2):202-212.doi:10.6046/gtzyyg.2020183.
doi: 10.6046/gtzyyg.2020183
[22] 新疆生产建设兵团年鉴编辑委员会. 兵团年鉴[M]. 新疆: 新疆生产建设兵团年鉴社, 2020.
[22] Editorial Committee of Xinjiang Production and Construction Corps Yearbook. Corps yearbook[M]. Xinjiang: Xinjiang Production and Construction Corps Yearbook Society, 2020.
[23] 莫治新, 柳维扬, 伍维模. 新疆阿拉尔垦区土壤发生特性及系统分类研究[J]. 干旱地区农业研究, 2009, 27(6):40-43,57.
[23] Mo Z X, Liu W Y, Wu W M. Research on the genetic characteristic and taxonomy of soils in Aral irrigated area[J]. Agricultural Research in the Arid Areas, 2009, 27(6):40-43,57.
[24] 卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi:10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
[24] Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi:10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
[25] 吴霞, 王长军, 樊丽琴, 等. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2):124-133.doi:10.6046/gtzyyg.2020210.
doi: 10.6046/gtzyyg.2020210
[25] Wu X, Wang C J, Fan L Q, et al. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land and Resources, 2021, 33(2):124-133.doi:10.6046/gtzyyg.2020210.
doi: 10.6046/gtzyyg.2020210
[26] Wivedi R S, Rao B R M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils[J]. International Journal of Remote Sensing, 1992, 13(11):2051-2058.
doi: 10.1080/01431169208904252 url: https://www.tandfonline.com/doi/full/10.1080/01431169208904252
[27] 吴家林. 阿拉尔垦区棉田土壤盐渍化的遥感监测与植棉效益分析[D]. 阿拉尔: 塔里木大学, 2021.
[27] Wu J L. Remote sensing monitoring and cotton plantation benefit analysis of cotton field soil salinization in Alar Reclamation Area[D]. Aral: Tarim University, 2021.
[28] 边玲玲, 王卷乐, 郭兵, 等. 基于特征空间的黄河三角洲垦利县土壤盐分遥感提取[J]. 遥感技术与应用, 2020, 35(1):211-218.
[28] Bian L L, Wang J L, Guo B, et al. Remote sensing extraction of soil salinity in Yellow River delta Kenli County based on feature space[J]. Remote Sensing Technology and Application, 2020, 35(1):211-218.
[29] 王遵亲, 祝寿泉, 尤文瑞, 等. 中国盐渍土[M]. 北京: 科学出版社,1993.
[29] Wang Z Q, Zhu S Q, You W R, et al. Saline soil in China[M]. Beijing: Science Press,1993.
[30] Staff U S S L. Diagnosis and improvement of saline and alkali soils[J]. Agriculture Handbook, 1954, 60:83-100.
[31] 李艳菊, 丁建丽, 米热古力·艾尼瓦尔. 渭-库绿洲土壤剖面盐分分布特征及驱动因子分析[J]. 灌溉排水学报, 2019, 38(6): 58-65.
[31] Li Y J, Ding J L, Ainiwaer M. Soil salt distribution and the factors affect it in Ogan Kucha River Oasis[J]. Journal of Irrigation and Drainage, 2019, 38(6):58-65.
[1] HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
[2] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[3] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[4] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[5] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[6] Qin ZHENG, Jun PAN, Lijun JIANG, Lixin XING, Yue JI, Yifan YU, Pengju WANG, Weijing ZHONG. A study of high temperature targets identification method based on spectral index[J]. Remote Sensing for Land & Resources, 2019, 31(3): 51-58.
[7] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[8] Yali ZHANG, Tashpolat·Teyibai, Ardak·Kelimu, Dong ZHANG, Ilyas·Nuermaimaiti, Fei ZHANG. Estimation model of soil salinization based on Landsat8 OLI image spectrum[J]. Remote Sensing for Land & Resources, 2018, 30(1): 87-94.
[9] GUAN Hong, JIA Keli, ZHANG Zhinan, MA Xin. Research on remote sensing monitoring model of soil salinization based on spectrum characteristic analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 100-104.
[10] LI Xiao-ming, YANG Jing-song, YU Mei, YANG Qi-yong, LIU Mei-xian. Research on Quantitative Remote Sensing of Soil Salinization in the Arid Area Based on Electromagnetic Induction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 53-58.
[11] LIN Ting, LIU Xiang-Nan, TAN Zheng. Zn Contamination Monitoring Model of Rice Based on ICA and Hyperspectral Index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 59-64.
[12] LI Hui-Zhi, LI Xin-Guo, WANG Ying. The Monitoring of Dynamic Changes of Soil Salinization in the Downstream
Oasis of the Kaidu River Based on Remote Sensing Technology
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 85-88.
[13] JIAO Quan-Jun, ZHANG Xia, ZHANG Bing, WEI Zheng, ZHENG Lan-Fen. THE RETRIEVAL OF FOREST CHLOROPHYLL CONCENTRATION BASED ON FOLIAR SPECTRA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 26-30.
[14] WAN Yu-qing, ZHANG Feng-li, YAN Yong-zhong . A RESEARCH ON THE HYPERSPECTRAL INDEXES OF DOMINANT VEGETATION IN YANHE DRAINAGE AREA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(1): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech