Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 35-40     DOI: 10.6046/zrzyyg.2021444
|
A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information
SU Tengfei()
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Download: PDF(3319 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Multi-scale segmentation is a key step in the information extraction of high-resolution remote sensing images. However, the evaluation of segmentation quality and the quantification of segmentation errors are still challenging. Based on boundary strength information, this study developed an unsupervised segmentation evaluation method of selecting the optimal scale parameter and elevating the local segmentation quality for multi-scale remote sensing image segmentation. Segmentation errors include over-segmentation and under-segmentation. This study modeled the two types of errors using normalized boundary gradient characteristics. The gradient information of patch edges was considered in the estimation of over-segmentation errors, while the intra-patch gradients were employed for the assessment of under-segmentation errors. To validate the proposed method, this study conducted an experiment on the evaluation of multi-scale segmentation results using two scenes of high-resolution remote sensing images. The segmentation evaluation results of the method coincided perfectly with the actual segmentation effects. The results indicate that the method proposed in this study can effectively reflect over- and under-segmentation errors.

Keywords boundary information      multi-scale segmentation      segmentation quality      unsupervised evaluation     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tengfei SU
Cite this article:   
Tengfei SU. A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information[J]. Remote Sensing for Natural Resources, 2023, 35(1): 35-40.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021444     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/35
简称 获取卫星 成像日期 分辨率/m 影像大小/像元 中心经纬度 光谱波段信息
T1 高分2号 2021年7月13日 4.00 400×400 41°6'55″N,108°11'39″E 近红外、红色、绿色、蓝色
T2 GeoEye-1 2018年8月14日 1.65 400×400 41°3'14″N,108°16'16″E 近红外、红色、绿色、蓝色
Tab.1  Basic information of two remote sensing images of high spatial resolution
Fig.1  Two scenes of image data and their extracted information in the experimental preparation
方法名称 反映过分
割的指标
反映亚分
割的指标
反映总分
割质量的指标
本文方法 EOSE EUSE ETE
JX方法[14] 全局Moran指数(vGMI) 面积加权方差(vawv) 指标分值(vGS)
UOA方法[16] θ φ ΣL2
改进UOA方法[17] θ φ ΣL2
SZ监督方法[13] 全局过分割错误(vGOSE) 全局亚分割错误(vGUSE) 全局分割错误(vTE)
Tab.2  The metrics used in the 5 evaluation approaches to reflect segmentation errors of different types
Fig.2  Evaluation results for the multi-scale segmentation of T1
Fig.3  Evaluation results for the multi-scale segmentation of T2
[1] Hossain M, Chen D. Segmentation for object-based image analysis(OBIA):A review of algorithms and challenges from remote sensing perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(1):115-134.
doi: 10.1016/j.isprsjprs.2019.02.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619300425
[2] Beauchemin M. Semi-supervised map regionalization for categorical data[J]. International Journal of Remote Sensing, 2019, 40(24):9401-9411.
doi: 10.1080/2150704X.2019.1633485 url: https://www.tandfonline.com/doi/full/10.1080/2150704X.2019.1633485
[3] Xiang D, Wang W, Tang T, et al. Adaptive statistical superpixel merging with edge penalty for polsar image segmentation[J]. IEEE Transactions on Geo-scienceand Remote Sensing, 2019, 58(4):2412-2429.
[4] Zhang M, Xue Y, Ge Y, et al. Watershed segmentation algorithm based on luv color space region merging for extracting slope hazard boundaries[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):246.
doi: 10.3390/ijgi9040246 url: https://www.mdpi.com/2220-9964/9/4/246
[5] Su T F, Liu T X, Zhang S W, et al. Machine learning-assisted region merging for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 168(1):89-123.
doi: 10.1016/j.isprsjprs.2020.07.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271620302033
[6] 张大明, 张学勇, 李璐, 等. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 国土资源遥感, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.
doi: 10.6046/gtzyyg.2021089
[6] Zhang D M, Zhang X Y, Li L, et al. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Land and Resources, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.
doi: 10.6046/gtzyyg.2021089
[7] Baatz M, Schäpe A. Multiresolution segmentation:An optimizing approach for high quality multi-scale segmentation[C]. Angewandte Geographich Informationsverarbeitung, 2000,XII,12-23.
[8] 范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
doi: 10.6046/zrzyyg.2021027
[8] Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technologies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi Area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
doi: 10.6046/zrzyyg.2021027
[9] 王华, 李卫卫, 李志刚, 等. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.
doi: 10.6046/zrzyyg.2020344
[9] Wang H, Li W W, Li Z G, et al. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.
doi: 10.6046/zrzyyg.2020344
[10] Costa H, Foody G M, Boyd D S. Supervised methods of image segmentation accuracy assessment in land cover mapping[J]. Remote Sensing of Environment, 2018, 205(2):338-351.
doi: 10.1016/j.rse.2017.11.024 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717305734
[11] Witharana C, Civco D L. Optimizing multi-resolution segmentation scale using empirical methods:Exploring the sensitivity of the supervised discrepancy measure euclidean distance 2(ED2)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1):108-121.
doi: 10.1016/j.isprsjprs.2013.11.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271613002669
[12] Su T F, Zhang S W. Multi-scale segmentation method based on binary merge tree and class label information[J]. IEEE Access, 2018, 6(1):17801-17816.
doi: 10.1109/ACCESS.2018.2819988 url: http://ieeexplore.ieee.org/document/8326500/
[13] Su T F, Zhang S W. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(1):256-276.
doi: 10.1016/j.isprsjprs.2017.06.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271617302654
[14] Johnson B, Xie Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):473-483.
doi: 10.1016/j.isprsjprs.2011.02.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271611000293
[15] Yang J, He Y, Weng Q. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1282-1286.
doi: 10.1109/LGRS.2015.2393255 url: http://ieeexplore.ieee.org/document/7042774/
[16] Troya-Galvis A, Gançarski P, Passat N, et al. Unsupervised quantification of under- and over-segmentation for object-based remote sensing image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(5):1936-1945.
[17] Su T F. Unsupervised evaluation-based region merging for high resolution remote sensing image segmentation[J]. GIScience & Remote Sensing, 2019, 56(6):811-842.
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[3] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[4] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[5] Wei LI, Weinan LIU, Yueping JIA, Hongyang LIU, Yong TANG. Information extraction of the Ebinur Lake artemia based on object - oriented method[J]. Remote Sensing for Land & Resources, 2018, 30(4): 176-181.
[6] LU Zhao-yi, ZUO Xiao-qing, HUANG Liang, LIU Jing. Road Change Detection Using Object-oriented Projective Interactive Partition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 60-64.
[7] YU Xue-qin, ZUO Xiao-qing, HUANG Liang. A Building Segmentation Algorithm Based on Mathematical Morphology and Multi-scale Segmentation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 41-44.
[8] DENG Yuan-Yuan, WU Zhao-Cong, YI Li-Na, HU Zhong-Wen, GONG Zheng-Juan. Research on Object-oriented Classification of Agricultural Land Based on High Resolution Images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 117-121.
[9] KONG Bo, TAO He-Ping, LIU Bin-Tao, CHEN Wei-Li, ZHANG Ji-Fei.
WETLAND DISTURBANCE PATTERNS BASED ON THE MULTI-SCALE REMOTE SENSING IMAGE SEGMENTATION METHOD
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 62-67.
[10] LIU Hao, HU Zhuo-Wei, ZHAO Wen-Hui. THE EXTRACTION OF LAND USE CHANGE CAUSED BY THE CONSTRUCTION OF KEY PROJECTS BASED ON OBJECT-ORIENTED METHOD: A CASE STUDY OF THE NATIONAL STADIUM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 86-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech