Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 47-52     DOI: 10.6046/gtzyyg.2019.04.07
|
Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis
Decai JIANG1, Wenji LI1, Jingmin LI1, Zhaofeng BAI2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China
2. AeroImgInfo Technology Co., Ltd., Beijing 100195, China
Download: PDF(2947 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, the extraction accuracy of the forest fire area by synthetic aperture Radar (SAR) is mainly limited to the analysis of single pixel. However, the application study of object-oriented technology based on pixel sets as the analysis unit is less in dealing with SAR images. In this paper, a multi-scale segmentation algorithm based on fractal net evolution approach (FNEA) was applied to the span of ALOS PALSAR images. Through the application research, the forest fire region, which happened in 2009 and was located in the Middle East of Alaska, USA, was extracted. The application validation of the algorithm was verified by comparing the experiment results with the auxiliary data of monitoring trends in burn severity (MTBS) data. The experiment results show that the classification accuracies of one-static span and two-static spans based on object-oriented analysis are improved by 12.7% and 15.8% respectively, compared with precious research. The researches show that object-oriented technology can be effectively applied to the information extraction form SAR image, and SAR technology has potential application in forest fire monitoring.

Keywords fractal net evolution approach      multi-scale segmentation algorithm      span      forest fire     
:  P236  
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Decai JIANG
Wenji LI
Jingmin LI
Zhaofeng BAI
Cite this article:   
Decai JIANG,Wenji LI,Jingmin LI, et al. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.07     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/47
Fig.1  Google Earth image of study area
数据类型 波长/cm 像元大小(距离向×
方位向)/(m×m)
升降轨 成像时间 像元个数(距离向×
方位向)/个
中心入射角/(°)
ALOS PALSAR 23.6
L波段
9.37×3.58 降轨 2009/08/03 1 248×18 432 23.935
2009/06/18 1 248×18 432 23.941
Tab.1  Parameters of the ALOS PALSAR images
Fig.2  Research procedure
Fig.3  Classification results around the forest fire region
样本像元分类 未燃烧区 水体 燃烧区 总和
未燃烧区 378 17 40 435
水体 4 23 1 28
燃烧区 31 0 106 137
总和 413 40 147
总体精度: 84.5% Kappa系数: 0.649
Tab.2  Post-fire confusion matrix
样本像元分类 未燃烧区 水体 燃烧区 总和
未燃烧区 385 17 23 425
水体 1 20 0 21
燃烧区 27 3 124 154
总和 413 40 147
总体精度: 88.2% Kappa系数: 0.735
Tab.3  Two-static confusion matrix
[1] 李明泽, 康祥瑞, 范文义 . 呼中林区火烧迹地遥感提取及林火烈度的空间分析[J]. 林业科学, 2017,53(3):163-174.
[1] Li M Z, Kang X R, Fan W Y . Burned area extraction in Huzhong forests based on remote sensing and the spatial analysis of the burned severity[J]. Scientia Silvae Sinicae, 2017,53(3):163-174.
[2] Tanase M, Santoro M, Juan D L R,et al.L-band SAR backscatter prospects for burn severity estimation in Boreal Forests [C]//ESA Living Planet Symposium, 2010.
[3] Tanase M A, Santoro M, Aponte C , et al. Polarimetric properties of burned forest areas at C- and L-band[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,7(1):267-276.
[4] 谭柳霞, 曾永年, 郑忠 . 林火烈度遥感评估指数适应性分析[J]. 国土资源遥感, 2016,28(2):84-90.doi: 10.6046/gtzyyg.2016.02.14.
doi: 10.6046/gtzyyg.2016.02.14
[4] Tan L X, Zeng Y N, Zheng Z . An adaptability analysis of remote sensing indices in evaluating fire severity[J]. Remote Sensing for Land and Resources, 2016,28(2):84-90.doi: 10.6046/gtzyyg.2016.02.14.
[5] 孙桂芬, 覃先林, 刘树超 , 等. 典型植被指数识别火烧迹地潜力分析[J]. 国土资源遥感, 2019,31(1):204-211.doi: 10.6046/gtzyyg.2019.01.27.
[5] Sun G F, Qin X L, Liu S C , et al. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land and Resources, 2019,31(1):204-211.doi: 10.6046/gtzyyg.2019.01.27.
[6] 祁帅 . 极化SAR林火燃烧面积提取与燃烧强度估计[D]. 兰州:兰州交通大学, 2015.
[6] Qi S . Polarimetric SAR Forest Fire Scars Extraction and Burn Severity Estimation[D]. Lanzhou:Lanzhou Jiaotong University, 2015.
[7] 姜德才 . 重轨卫星InSAR技术在多云雨山区DEM生成及更新中的应用研究[D]. 北京:中国测绘科学研究院, 2017.
[7] Jiang D C . Repeat-Pass Spaceborne SAR Interferometry for DEM Generation in Cloudy-Rainy Mountianous Area[D]. Beijing:Chinese Academy of Surveying and Mapping, 2017.
[8] 祁帅, 张永红, 汪慧琴 . 林火干扰区全极化SAR影像的散射特性分析[J]. 国土资源遥感, 2016,28(2):48-53.doi: 10.6046/gtzyyg.2016.02.08.
doi: 10.6046/gtzyyg.2016.02.08
[8] Qi S, Zhang Y H, Wang H Q . Analysis of fire disturbed forests scattering characteristics using polarimetric SAR image[J]. Remote Sensing for Land and Resources, 2016,28(2):48-53.doi: 10.6046/gtzyyg.2016.02.08.
[9] 汤玲英, 刘雯, 杨东 , 等. 基于面向对象方法的Sentinel-1A SAR在洪水监测中的应用[J]. 地球信息科学学报, 2018,20(3):377-384.
doi: 10.12082/dqxxkx.2018.170599
[9] Tang L Y, Liu W, Yang D , et al. Flooding monitoring application based on the object-oriented method and Sentinel-1A SAR data[J]. Journal of Geo-Information Science, 2018,20(3):377-384.
[10] 张红, 叶曦, 王超 , 等. 面向对象的高分辨率SAR图像处理及应用[J]. 中国图象图形学报, 2018,19(3):344-357.
[10] Zhang H, Ye X, Wang C , et al. The processing and application of high resolution SAR images with object-based image analysis[J]. Journal of Image and Graphics, 2018,19(3):344-357.
[11] 汪闽, 万其明, 张大骞 , 等. 光谱、形状特征结合的多精度图像分割算法与应用[J]. 地球信息科学学报, 2010,12(2):261-268.
[11] Wang M, Wan Q M, Zhang D Q , et al. Multi-resolution remotely sensed image segmentation in combination with spectral and shape features[J]. Journal of Geo-Information Science, 2010,12(2):261-268.
[12] Baatz M, Schäpe A. Object-oriented and multi-scale image analysis in semantic networks [C]//Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, 1999.
[13] Baatz M, Schäpe A . Multiresolution segmentation:An optimization approach for high quality multiscale image segmentation[J]. Journal of Photogrammetry and Remote Sensing, 2007,58:3-4.
[14] 白罩峰 . 基于极化特征分析的卫星SAR林火燃烧强度估计研究[D]. 兰州:兰州交通大学, 2017.
[14] Bai Z F . Forest Fire Severity Estimation with Satellite Polarimetric SAR Based on Polarization Feature[D]. Lanzhou:Lanzhou Jiaotong University, 2017.
[15] 张楼香, 阮仁宗, 夏双 . 洪泽湖湿地纹理特征参数分析[J]. 国土资源遥感, 2015,27(1):75-80.doi: 10.6046/gtzyyg.2015.01.12.
doi: 10.6046/gtzyyg.2015.01.12
[15] Zhang L X, Ruan R Z, Xia S . Parameter analysis of image texture of wetland in the Hongze Lake[J]. Remote Sensing for Land and Resources, 2015,27(1):75-80.doi: 10.6046/gtzyyg.2015.01.12.
[16] Comber A, Fisher P, Brunsdon C , et al. Spatial analysis of remote sensing image classification accuracy[J]. Remote Sensing of Environment, 2012,127(140):237-246.
[17] Tortora R D . A note on sample size estimation for multinomial populations[J]. The American Statistician, 1978,32(3):100-102.
[18] Zeng M H, Zhong M, Hunt J D . Analysis of the impact of sample size,attribute variance and within-sample choicedistribution on the estimation accuracy of multinomial logit models using simulated data[J]. Journal of Systems Science and Systems Engineering, 2018,27(6):771-789.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[3] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[4] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
[5] JIA Chunyang, LI Weihua, LI Xiaochun. High-resolution remote sensing image segmentation based on weight adaptive fractal net evolution approach[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 22-25.
[6] GAO Mao-Fang, QIN Zhi-Hao, LIU San-Chao. A STUDY OF FOREST FIRE DETECTION BASED ON MODIS DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(2): 60-63.
[7] Yi Haoruo, He Xiaoping, Ji Ping, Zhang Yanzhong. RESEARCH ON MONITORING FOREST FIRE IN SOUTH CHINA BY NOAA/AVHRR DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 1995, 7(1): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech