Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 41-48     DOI: 10.6046/zrzyyg.2022048
Information extraction method of mangrove forests based on GF-6 data
XU Qingyun(), LI Ying, TAN Jing, ZHANG Zhe
Beijing Aerospace TITAN Technology Co. Ltd., Beijing 100070, China
Download: PDF(2796 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Mangrove forests are periodically inundated by tidal water. This characteristic opens up an opportunity but also poses a challenge for the information extraction of mangrove forests using remote sensing technology. To explore the contribution of the red-edge band of GF-6 satellite data in information extraction of mangrove forests under the condition of random tides, this study investigated the southeastern Dongzhaigang area-the largest mangrove forest area in Hainan Province and obtained standard samples using the GF-2 satellite data. The reflectance spectral curves of typical surface features were constructed based on the standard samples and the GF-6 satellite data. Then, a baseline was established based on the bands strongly absorbed by vegetation, and the intertidal mangrove forest index (IMFI) applicable to the GF-6 satellite data was defined using the average reflectance of bands above the baseline. Meanwhile, the red-edge normalized difference vegetation index (RENDVI) was also established. The two indices were compared with commonly used indices, such as the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), using box-whisker plots. Then, using the decision tree model constructed based on IMFI and RENDVI, information on typical mangrove forest in the study area were extracted. The precision of the extraction results was verified through comparison with visual interpretation results of the samples extracted from the GF-2 satellite data. The results show that: ① Because mangrove forests are periodically inundated by tidal water, the reflectance spectral curves of intertidal mangrove forests were relatively scattered between the standard spectral curves of water bodies and mangrove forests; ② IMFI and RENDVI can reflect the differences in the reflectance spectra of the red-edge and near-infrared bands and thus effectively separated the intertidal mangrove forests, mangrove forests, and water bodies; ③ The decision tree model constructed based on IMFI and RENDVI can effectively extract the distribution information of the mangrove forests, with an overall accuracy of 0.95 and a Kappa coefficient of 0.90. The introduction of the red-edge band plays an important role in the information extraction of mangrove forests and has great potential for application. This study can be used as a reference for the ecological applications of red-edge data from domestic satellites.

Keywords GF-6 satellite      red-edge band      mangrove forest index      reflectance spectrum      Dongzhaigang     
ZTFLH:  TP79  
Issue Date: 20 March 2023
E-mail this article
E-mail Alert
Articles by authors
Qingyun XU
Ying LI
Jing TAN
Cite this article:   
Qingyun XU,Ying LI,Jing TAN, et al. Information extraction method of mangrove forests based on GF-6 data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 41-48.
URL:     OR
Fig.1  Location of study area
卫星 传感器 采集时间 产品序列号 11: 00
12: 00
GF-2 PMS1 2020-08-10
11: 29: 34
4982331 113 130
11: 29: 37
PMS2 2020-08-10
11: 29: 34
11: 29: 37
GF-6 WFV 2021-01-14
11: 44: 49
1120071535 181 164
Tab.1  Description of satellite data
Fig.2  Technology roadmap
Fig.3  Reflectance spectral curves of typical land cover types in study area
Fig.4  Baseline theoretical diagram of building IMFI
Fig.5  Boxplot of different index values of mangrove forest,intertidal mangrove forest and water
Fig.6  Mangrove extraction results
覆盖类型 分类结果
红树林 其他 总计 生产者精度/%
红树林 89 4 93 96
其他 5 91 96 95
总计 94 95 189
用户精度/% 95 96
Tab.2  Mangrove extraction accuracy statistics
[1] 张乔民, 隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报, 2001, 16(1):28-36.
[1] Zhang Q M, Sui S Z. The mangrove wetland resources and their conservation in China[J]. Journal of Natural Resources, 2001, 16(1):28-36.
doi: 10.11849/zrzyxb.2001.01.005
[2] 章恒, 王世新, 周艺, 等. 多源遥感影像红树林信息提取方法比较[J]. 湿地科学, 2015, 13(2):145-152.
[2] Zhang H, Wang S X, Zhou Y, et al. Comparison of different metho-ds of mangrove extraction from multi-source remote sensing images[J]. Wetland Science, 2015, 13(2):145-152.
[3] 但新球, 廖宝文, 吴照柏, 等. 中国红树林湿地资源、保护现状和主要威胁[J]. 生态环境学报, 2016, 25(7):1237-1243.
doi: 10.16258/j.cnki.1674-5906.2016.07.021
[3] Dan X Q, Liao B W, Wu Z B, et al. Resources,conservation status and main threats of mangrove wetlands in China[J]. Ecology and Environmental Sciences, 2016, 25(7):1237-1243.
[4] Heumann B W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach[J]. Remote Sensing, 2011, 3(11):2440-2460.
doi: 10.3390/rs3112440 url:
[5] Cardenas N Y, Joyce K E, Maier S W. Monitoring mangrove forests: Are we taking full advantage of technology?[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63(7):1-14.
doi: 10.1016/j.jag.2017.07.004 url:
[6] Heumann B W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities[J]. Progress in Physical Geography: Earth and Environment, 2011, 35(1):87-108.
doi: 10.1177/0309133310385371 url:
[7] Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery[J]. Remote Sensing, 2016, 8(1):24.
doi: 10.3390/rs8010024 url:
[8] Mondal P, Liu X, Fatoyinbo T E, et al. Evaluating combinations of Sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa[J]. Remote Sensing, 2019, 11(24):2928.
doi: 10.3390/rs11242928 url:
[9] 蒙良莉. 基于哨兵多源遥感数据的红树林信息提取算法研究[D]. 南宁: 南宁师范大学, 2020.
[9] Meng L L. Mangrove information extraction algorithm based on multi-source remote sensing data of sentinel[D]. Nanning: Nanning Normal University, 2020.
[10] Jia M M, Wang Z M, Wang C, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17):2043.
doi: 10.3390/rs11172043 url:
[11] Farid M F. Comparison of different vegetation indices for assessing mangrove density using Sentinel-2 imagery[J]. International Journal of GEOMATE, 2018, 14(45):42-51.
[12] Baloloy A B, Blanco A C, Ana R R C S, et al. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:95-117.
doi: 10.1016/j.isprsjprs.2020.06.001 url:
[13] Manna S, Raychaudhuri B. Retrieval of leaf area index and stress conditions for Sundarban mangroves using Sentinel-2 data[J]. International Journal of Remote Sensing, 2020, 41(3):1019-1039.
doi: 10.1080/01431161.2019.1655174 url:
[14] 徐芳, 张英, 翟亮, 等. 基于Sentinel-2的潮间红树林提取方法[J]. 测绘通报, 2020(2):49-54.
[14] Xu F, Zhang Y, Zhai L, et al. Extraction method of intertidal mangrove by using Sentinel-2 images[J]. Bulletin of Surveying and Mapping, 2020(2):49-54.
[15] Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7):1459-1470.
doi: 10.1080/01431169408954177 url:
[16] 王利军, 郭燕, 王来刚, 等. GF6卫星红边波段对春季作物分类精度的影响[J]. 河南农业科学, 2020, 49(6):165-173.
[16] Wang L J, Guo Y, Wang L G, et al. Impact of red-edge waveband of GF6 satellite on classification accuracy of spring crops[J]. Journal of Henan Agricultural Sciences, 2020, 49(6):165-173.
[17] 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10):1168-1179.
[17] Liang J, Zheng Z W, Xia S T, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10):1168-1179.
[18] 姚保民, 王利民, 王铎, 等. 高分六号卫星WFV新增谱段对农作物识别精度的改善[J]. 卫星应用, 2020(12):31-34.
[18] Yao B M, Wang L M, Wang D, et al. Improvement of the accuracy of crop recognition by the newly added spectrum of the GF-6 satellite WFV[J]. Satellite Application, 2020(12):31-34.
[19] 张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.
doi: 10.12082/dqxxkx.2019.190116
[19] Zhang Q Y, Li Z, Xia C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. Journal of Geo-Information Science, 2019, 21(10):1619-1628.
[20] Xia Q, Qin C Z, Li H, et al. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery[J]. Remote Sensing, 2018, 10(9):1343.
doi: 10.3390/rs10091343 url:
[21] Zhang X H, Treitz P M, Chen D M, et al. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 62:201-214.
doi: 10.1016/j.jag.2017.06.010 url:
[22] Rogers K, Lymburner L, Salum R, et al. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data[J]. Hydrobiologia, 2017, 803(1):49-68.
doi: 10.1007/s10750-017-3257-5
[23] Jia M M, Wang Z M, Zhang Y Z, et al. Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province,China,influenced by human and natural factors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):311-323.
doi: 10.1109/JSTARS.4609443 url:
[24] Jia M M, Wang Z M, Zhang Y Z, et al. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:535-545.
doi: 10.1016/j.jag.2018.07.025 url:
[25] 陆春玲, 白照广, 李永昌, 等. 高分六号卫星技术特点与新模式应用[J]. 航天器工程, 2021, 30(1):7-14.
[25] Lu C L, Bai Z G, Li Y C, et al. Technical characteristic and new mode applications of GF-6 satellite[J]. Spacecraft Engineering, 2021, 30(1):7-14.
[26] 张威, 陈正华, 王纪坤. 广西北部湾海岸带红树林变化的遥感监测[J]. 广西大学学报(自然科学版), 2015, 40(6):1570-1576.
[26] Zhang W, Chen Z H, Wang J K. Monitoring the areal variation of mangrove in Beibu Gulf coast of Guangxi China with remote sensing data[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(6):1570-1576.
[27] Pettorelli N, Ryan S, Mueller T, et al. The normalized difference vegetation index (NDVI):Unforeseen successes in animal ecology[J]. Climate Research, 2011, 46(1):15-27.
doi: 10.3354/cr00936 url:
[28] Gao B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
doi: 10.1016/S0034-4257(96)00067-3 url:
[29] Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing, 1997, 18(12):2691-2697.
doi: 10.1080/014311697217558 url:
[30] Gower J, Hu C M, Borstad G, et al. Ocean color satellites show extensive lines of floating sargassum in the Gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12):3619-3625.
doi: 10.1109/TGRS.2006.882258 url:
[31] Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
doi: 10.1016/j.rse.2009.05.012 url:
[32] Gao B C, Li R R. FVI-A floating vegetation index formed with three near-IR channels in the 1.0-1.24 μm spectral range for the detection of vegetation floating over water surfaces[J]. Remote Sensing, 2018, 10(9):1421.
doi: 10.3390/rs10091421 url:
[1] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[2] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[3] PAN Peifen, YANG Wunian, DAI Xiaoai. Vegetation moisture content model based on principal component analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 38-42.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech