Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 123-131     DOI: 10.6046/zrzyyg.2022072
|
A hyperspectral analysis of alteration zoning in the Hadamengou gold deposit and its significance for ore prospecting
XU Daxing1,2(), YANG Biao3,4(), SHAO Zhaogang1, LIU Changfeng5, WANG Da6, WANG Jianping6
1. Chinese Academy of Geological Sciences, Beijing 100037, China
2. School of Earth and Space Sciences, Peking University,Beijing 100871, China
3. Hohhot Natural Resources Comprehensive Survey Center, Hohhot 010010, China
4. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
5. School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
6. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Download: PDF(9242 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Hadamengou gold deposit in Baotou City, Inner Mongolia is an important large gold deposit in the Wulashan-Daqingshan metallogenic belt, with great prospecting potential. To give full play to remote sensing technology in geological prospecting, this study extracted the mineralization alteration information of the Hadamengou gold deposit from remote sensing data of different satellites. Based on the spectral characteristics of alteration minerals in the mining area, this study proposed a comprehensive processing method that extracted iron staining information from the Landsat8 OLI and WorldView-3 data, hydroxyl information from the ASTER and WorldView-3 data, and carbonation information from the ASTER data through principal component analysis. As a result, two alteration zones were delineated based on the distribution patterns of alteration anomalies and the geological map analysis of the mining area. By combining the study results of the ore-controlling structures, it is believed that the metallogenic hydrothermal processes of the Hadamengou gold deposit were closely related to structures. This study can provide a reference for the prospecting for the same type of gold deposits in the Wulashan-Daqingshan metallogenic belt and can guide the peripheral prospecting of the Hadamengou gold deposit.

Keywords Hadamengou gold deposit      alteration anomaly      comprehensive processing method      ore-controlling structure      peripheral prospecting     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Daxing XU
Biao YANG
Zhaogang SHAO
Changfeng LIU
Da WANG
Jianping WANG
Cite this article:   
Daxing XU,Biao YANG,Zhaogang SHAO, et al. A hyperspectral analysis of alteration zoning in the Hadamengou gold deposit and its significance for ore prospecting[J]. Remote Sensing for Natural Resources, 2023, 35(1): 123-131.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022072     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/123
Fig.1  Location map and geological sketch of the Hadamenggou mining area (modified on the basis of Xu[15])
传感器 光谱波段 波长范围/μm 空间分辨率/m
Landsat8 OLI B1 Coastal 0.43~0.45 30
B2 Bule 0.45~0.51 30
B3 Green 0.53~0.59 30
B4 Red 0.64~0.67 30
B5 NIR 0.85~0.88 30
B6 SWIR 1 1.57~1.65 30
B7 SWIR2 2.11~2.29 30
ASTER B1 Green 0.52~0.60 15
B2 Red 0.63~0.69 15
B3N NIR 0.78~0.86 15
B4 SWIR1 1.60~1.70 30
B5 SWIR2 2.145~2.185 30
B6 SWIR3 2.185~2.225 30
B7 SWIR4 2.235~2.285 30
B8 SWIR5 2.295~2.365 30
B9 SWIR6 2.360~2.430 30
WorldView-3 B1 Coastal 0.40~0.45 1.24
B2 Blue 0.45~0.51 1.24
B3 Green 0.51~0.58 1.24
B5 Red 0.63~0.69 1.24
B6 Red Edge 0.705~0.745 1.24
B7 VNIR1 0.770~0.895 1.24
B9 SWIR1 1.195~1.225 7.5
B10 SWIR2 1.550~1.590 7.5
B13 SWIR5 2.145~2.185 7.5
B14 SWIR6 2.185~2.225 7.5
B15 SWIR7 2.235~2.285 7.5
B16 SWIR8 2.295~2.365 7.5
Tab.1  Comparison of feature parameters of Landsat8 OLI, WorldView-3 and ASTER remote sensing image data
Fig.2  Spectral reflectance curve of altered minerals in the Hadamengou gold mining area
Fig.3  Experimental processing flow chart of remote sensing data
Landsat8 OLI铁染蚀变异常
主分量 B1 B3 B4 B5
PC1 0.491 747 0.596 503 0.505 663 0.495 927
PC2 0.749 143 0.083 068 -0.196 777 -0.627 027
PC3 0.417 337 -0.491 333 -0.489 557 0.587 159
PC4 -0.150 995 0.703 666 -0.682 582 0.127 031
ASTER羟基蚀变异常
主分量 B5 B7 B8 B9
PC1 0.485 702 0.542 789 0.517 743 0.448 793
PC2 0.477 404 0.355 001 -0.132 887 -0.792 717
PC3 0.718 932 -0.489 810 -0.404 945 0.281 500
PC4 -0.138 982 0.582 614 -0.741 824 0.301 567
ASTER碳酸盐化蚀变异常
主分量 B5 B6 B8 Band9
PC1 0.496 935 0.512 477 0.529 086 0.458 793
PC2 0.435 960 0.458 340 -0.206 005 -0.746 609
PC3 0.674 196 -0.368 475 -0.554 123 0.320 366
PC4 -0.329 323 0.625 714 -0.608 752 0.459 792
Tab.2  Fe3+, OH-, CO 3 2 - alteration characteristic matrix model of the Hadamengou gold deposit
Landsat8 OLI铁染蚀变分级
图像亮
度值
最小值 最大值 平均值(X) 标准差(δ)
-127.919 731 139.990 753 -0.110 923 21.576 088
异常统
计值
统计值 应用值
X+1.5δ 32.253 209
X+2.0δ 43.041 253
X+2.5δ 53.829 297
ASTER羟基蚀变异常分级
图像亮
度值
最小值 最大值 平均值(X) 标准差(δ)
-69.988 426 70.972 389 0.093 647 21.090 162
异常统
计值
统计值 应用值
X+1.5δ 31.728 890
X+2.0δ 42.273 971
X+2.5δ 52.819 052
ASTER碳酸盐化分级
图像
亮度值
最小值 最大值 平均值(X) 标准差(δ)
-95.791 901 99.937 935 -0.027 181 25.156 812
异常
统计值
统计值 应用值
X+1.5δ 37.708 037
X+2.0δ 50.286 443
X+2.5δ 62.864 849
Tab.3  Classification statistics of Fe3+, OH-, CO 3 2 - ?alteration anomaly in the hadamengou gold deposit
Fig.4  Anomaly distribution of iron staining, hydroxyl and carbonation alteration in Hadamengou gold deposit
主分量 铁染蚀变异常
B3 B6 B9 B11
PC1 0.004 139 0.004 708 0.703 261 0.710 904
PC2 0.042 929 0.005 467 -0.710 395 -0.702 471
PC3 -0.706 442 0.703 310 0.009 631 -0.078 749
PC4 0.008 635 0.096 663 -0.708 294 0.699 214
主分量 羟基蚀变异常
B1 B7 B11 B16
PC1 -0.234 232 -0.297 356 -0.671 890 -0.636 615
PC2 0.667 832 -0.638 428 -0.216 309 -0.315 626
PC3 -0.706 442 0.703 310 0.009 631 -0.078 749
PC4 0.008 635 -0.096 663 -0.708 294 0.699 214
主分量 碳酸盐化蚀变异常
B1 B7 B14 B16
PC1 0.000 654 -0.001 290 -0.707 102 -0.707 110
PC2 -0.286 312 -0.888 022 -0.253 727 0.255 079
PC3 0.082 120 -0.351 374 -0.659 753 0.659 180
PC4 0.954 610 -0.296 567 -0.018 860 0.020 283
Tab.4  WorldView-3 Principal component analysis matrix model
Fig.5  Anomaly distribution map of iron contamination and hydroxyl alteration in Hadamengou gold deposit
Fig.6  Field verification of the Hadamenggou gold mine outcrop
Fig.7  Geological remote sensing interpretation map of the Hadamenggou gold mine
[1] 张玉君, 杨建民, 陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J]. 国土资源遥感, 2002, 54(4):31-36.doi:10.6046/gtzyyg.2002.04.07.
doi: 10.6046/gtzyyg.2002.04.07
[1] Zhang Y J, Yang J M, Chen W. Research and application of remote sensing anomaly extraction method for ETM+(TM) alteration:Geological basis and spectral premise[J]. Remote Sensing for Land and Resources, 2002, 54(4):31-36.doi:10.6046/gtzyyg.2002.04.07.
doi: 10.6046/gtzyyg.2002.04.07
[2] 丛丽娟, 胡凤翔, 杨俊才, 等. 内蒙古朱拉扎嘎金矿ETM+数据提取蚀变异常方法研究[J]. 现代地质, 2007, 21(4):726-732.
[2] Cong L J, Hu F X, Yang J C, et al. Study on alteration anomaly extraction method of ETM+ data in Zhulazaga gold deposit,Inner Mongolia[J]. Geoscience, 2007, 21 (4):726-732.
[3] 张玉君, 杨建民, 姚佛军. 多光谱遥感技术预测矿产资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J]. 地学前缘, 2007, 14(5):64-70.
[3] Zhang Y J, Yang J M, Yao F J. Prediction of mineral resources potential using multi-spectral remote sensing technology:A case study of Ouyutolgoi Cu-Au deposit in Mongolia[J]. Earth Science Frontiers, 2007, 14(5):64-70.
doi: 10.1016/S1872-5791(07)60003-7 url: https://linkinghub.elsevier.com/retrieve/pii/S1872579107600037
[4] 刘建宇, 陈玲, 李伟, 等. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019, 31(1):229-236.doi:10.6046/gtzyyg.2019.01.30.
doi: 10.6046/gtzyyg.2019.01.30
[4] Liu J Y, Chen L, Li W, et al. Optimization of alteration information extraction method for ductile shear zone type gold deposit based on ASTER data[J]. Remote Sensing for Land and Resources, 2019, 31(1):229-236.doi:10.6046/gtzyyg.2019.01.30.
doi: 10.6046/gtzyyg.2019.01.30
[5] Xu K, Wang X F, Kong C F, et al. Identification of hydrothermal alteration mineralsfor exploring gold deposits based on SVM and PCA using ASTER data:A case study of Gulong[J]. Remoting Sensing, 2019, 11(12):1-22.
[6] Salehi T, Tangestani M H. Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit,using Worldview-3 VNIR data in the Northeastern Isfahan,Iran[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73(6):156-169.
doi: 10.1016/j.jag.2018.06.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243418302022
[7] Sun Y Q, Tian S F, Di B G. Extracting mineral alteration information using WorldView-3 data[J]. Geoscience Frontiers, 2017, 8(5):1051-1062.
doi: 10.1016/j.gsf.2016.10.008 url: https://linkinghub.elsevier.com/retrieve/pii/S1674987116301554
[8] 毛晓长, 刘文灿, 杜建国, 等. ETM+和ASTER数据在遥感矿化蚀变信息提取应用中的比较——以安徽铜陵凤凰山矿田为例[J]. 现代地质, 2005(2):309-314.
[8] Mao X C, Liu W C, Du J G, et al. Comparison of ETM+ and ASTER data in remote sensing alteration information extraction:A case study of the Fenghuangshan ore field in Tongling,Anhui Province[J]. Geoscience, 2005(2):309-314.
[9] Zhang T B, Yi G H, Li H M, et al. Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in Duolong porphyry Cu-Au deposit,Tibetan Plateau,China[J]. Remote Sensing, 2016, 8(11):1-23.
doi: 10.3390/rs8010001 url: http://www.mdpi.com/2072-4292/8/1/1
[10] Bedini E. Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits,southeast Spain[J]. Advances in Space Research, 2019, 63(10):336-3357.
[11] Zhang, Y P, Chen, X H, Zuza A V, et al. Sedimentary paleoenvironment of the eastern Hexi Corridor,NW China:Constraints from chert geochemistry and sedimentary analysis of early paleozoic strata[J]. Acta Geologica Sinica, 2020, 94(4):1223-1237.
[12] Wang Y,Chen, X H, Nie L S, et al. Late paleozoic element migration and accumulation under intracontinental sinistral strike-slip faulting in the west junggar orogenic belt,NW China[J]. Acta Geologica Sinica, 2020, 94(6):2012-2030.
[13] 张义平, 肖文霞, 张进, 等. 河西走廊东部香山群时代和物源讨论[J]. 中国地质, 2015, 42(6):1774-1792.
[13] Zhang Y P, Xiao W X, Zhang J, et al. The age and provenance of Xiangshan Group in the east of Hexi Corridor[J]. Geology of China, 2015, 42(6):1774-1792.
[14] Zhang Y M, Gu X X, Xiang Z L, et al. Magmatic hydrothermal origin of the Hadamengou-Liubagou Au-Mo deposit,Inner Mongolia,China:Constrians on geology,stable and Re-Os isotopes[J]. Ore Geology Reviews, 2017(2), 86:172-195.
doi: 10.1016/j.oregeorev.2017.01.029 url: https://linkinghub.elsevier.com/retrieve/pii/S0169136816305224
[15] 徐大兴. 内蒙古哈达门沟金矿床构造控矿研究及意义[D]. 北京: 中国地质大学(北京), 2021.
[15] Xu D X. Study on ore-controlling structure of the Hadamengou deposit in Inner Mongolia and its significance[D]. Beijing: China University of Geosciences (Beijing), 2021.
[16] 苏胜贵. 内蒙古哈达门沟金矿田100号脉深部找矿预测[D]. 北京: 中国地质大学(北京), 2019.
[16] Su S G. Deep prospecting prediction of No.100 vein in the Hadamenggou gold field,Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2019.
[17] 章永梅. 内蒙古柳坝沟—哈达门沟金矿田成因、控矿因素与找矿方向[D]. 北京: 中国地质大学(北京), 2012.
[17] Zhang Y M. Genesis,ore-controlling factors and prospecting direction of Liubagou-Hadamengou gold deposit in Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2012.
[18] 侯万荣. 内蒙古哈达门沟金矿床与金厂沟梁金矿床对比研究[D]. 北京: 中国地质科学院, 2011.
[18] Hou W R. Comparative study on the Hadamenggou gold deposit and Jinchanggouliang gold deposit in Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences, 2011.
[19] 张玉君, 曾朝铭. 西藏冈底斯地区斑岩铜矿识别的最佳多光谱遥感异常判别研究[J]. 矿床地质, 2012, 31(4):671-698.
[19] Zhang Y J, Zeng C M. Study on the best multi-spectral remote sensing anomaly identification of porphyry copper deposits in Gangdisi area,Tibet[J]. Mineral Deposits, 2012, 31(4):671-698.
[20] 白雅文. 遥感技术在地质构造信息提取中的应用——以内蒙古四子王旗地区为例[D]. 北京: 中国地质大学(北京), 2006.
[20] Bai Y W. Application of remote sensing technology in geological structure information extraction:A case study of Siziwang Banner,Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2006.
[21] Karimzadeh S, Tangestani M H. Evaluating the VNIR-SWIR datasets of WorldView-3 forlithological mapping of a metamorphic-igneous terrain usingsupport vector machine algorithm:A case study of central Iran[J]. Advances in Space Research, 2021, 68(6):2421-2440.
doi: 10.1016/j.asr.2021.05.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117721003719
[22] 郑亚东, Davis G A, 王琮, 等. 内蒙古大青山大型逆冲推覆构造[J]. 中国科学(D 辑), 1998, 28(4):289-295.
[22] Zheng Y D, Davis G A, Wang C, et al. Large thrust nappe structure in Daqingshan,Inner Mongolia[J]. Science in China(Series D), 1998, 28(4):289-295.
[23] 张进江, 戚国伟, 郭磊, 等. 内蒙古大青山逆冲推覆体系中生代逆冲构造活动的40Ar-39Ar定年[J]. 岩石学报, 2009,(3):609-620.
[23] Zhang J J, Qi G W, Guo L, et al. 40Ar-39Ar dating of Mesozoic thrust activity in Daqingshan thrust nappe system,Inner Mongolia[J]. Journal of Rock, 2009,(3):609-620.
[24] 刘正宏, 徐仲元, 杨振升. 大青山逆冲推覆体系含义及地质特征[J]. 世界地质, 2001, 20(3):224-230.
[24] Liu Z H, Xu Z Y, Yang Z S. Implications and geological characteristics of Daqingshan thrust nappe system[J]. World Geology, 2001, 20(3):224-230.
[25] 王建平, 杨玉东. 内蒙大青山地区的冲断和推覆构造[R]. 北京: 中国地质科学院地质力学研究所, 1983:44-57.
[25] Wang J P, Yang Y D. Thrust and nappe structures in Daqingshan area,Inner Mongolia[R]. Beijing: Institute of Geomechanics Chinese Academy of Geological Sciences, 1983:44-57.
[26] 王海滨, 张进江, 古大祥, 等. 内蒙古中部盘羊山逆冲推覆体系的构造特征、活动时限与构造意义[J]. 大地构造与成矿学, 2021, 45(5):839-850.
[26] Wang H B, Zhang J J, Gu D X, et al. Tectonic characteristics,active time and tectonic significance of Panyangshan thrust nappe system in central Inner Mongolia[J]. Tectonics and Metallogeny, 2021, 45(5):839-850.
[27] 杜菊民, 张庆龙, 李洪喜, 等. 内蒙古中部大青山地区推覆构造系统及与断层相关的褶皱[J]. 地质通报, 2005, 24(7):660-664.
[27] Du J M, Zhang Q L, Li H X, et al. Nappe structural system and fault-related folds in Daqingshan area,central Inner Mongolia[J]. Geological Bulletin of China, 2005, 24 (7):660-664.
[28] 张浩然. 内蒙古大青山东段逆冲推覆构造[D]. 北京: 中国地质大学(北京), 2009.
[28] Zhang H R. Thrust nappe structure in eastern Daqingshan section,Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2009.
[29] 何斌. 内蒙古大青山西段晚古生代—中生代逆冲系统及其演化[D]. 北京: 中国地质大学(北京), 2019.
[29] He B. Late Paleozoic to Mesozoic thrust system and its evolution in western Daqingshan section,Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2019.
[30] 刘得文. 内蒙古哈达门沟金矿区构造变形特征与控矿构造研究[D]. 北京: 中国地质大学(北京), 2014.
[30] Liu D W. Study on structural deformation characteristics and ore-controlling structure of the Hadamenggou gold deposit,Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2014.
[31] Yan S X, Liu Q S, Wang H M, et al. Remote sensing strategic exploration of large or superlarge gold ore deposits[C]// Asia-Pacific Symposium on Remote Sensing of the Atmosphere,Environment,and Space, 1998.
[1] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[2] Haihui HAN, Guangli REN, Yilin WANG, Min YANG, Anqiang YAO, Zhuan ZHANG. Application of collaborative processing method to the analysis of remote sensing alteration abnormal causes: A case study of Fangshankou area in Beishan[J]. Remote Sensing for Land & Resources, 2020, 32(1): 138-147.
[3] Honglin MA, Weijie JIA, Changliang FU, Wei LI. Extraction of geological structural and alteration information and the prediction of metallogenic favorable locations in northeastern Jeddah, Saudi Arabia[J]. Remote Sensing for Land & Resources, 2019, 31(3): 174-182.
[4] Dachang YANG, Jie CHEN, Zihong GAO, Yachao HAN. Extraction of hydrocarbon micro-seepage information based on TG-1 hyperspectral data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 107-113.
[5] HAN Haihui, WANG Yilin, YANG Min, REN Guangli, YANG Junlu, LI Jianqiang, GAO Ting. Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 137-142.
[6] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[7] LIU Wen-lan, ZHANG Wei. Remote Sensing Structural Alteration Information Extraction and Ore Prognosis: A Case Study of Laos[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 68-74.
[8] WANG Feng-de, ZHAO Zhi-fang, MAO Yu-jing, TAN Shu-cheng. A Comprehensive Analysis of Remote Sensing Geological Characteristics and Ore Prospecting Perspective of Luchun Area,Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 98-104.
[9] DIAO Hai, ZHANG Da, DI Yong-Jun, WANG Zhen, WANG Hao-Ran, XIONG Guang-Qiang.
The Extraction of Alteration Anomalies from ASTER Data Based on Principal Component Analysis and Fractal Model
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 75-80.
[10] ZHANG Yu-jun, YANG Jian-min, CHEN Wei. A STUDY OF THE METHOD FOR EXTRACTIOH OF ALTERATION ANOMALIES FROM THE ETM~+(TM) DATA AND ITS APPLICATION: Geologic Basis and Spectral Precondition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(4): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech