Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (2) : 75-80     DOI: 10.6046/gtzyyg.2011.02.14
Technology and Methodology |

The Extraction of Alteration Anomalies from ASTER Data Based on Principal Component Analysis and Fractal Model
 DIAO Hai, ZHANG Da, DI Yong-Jun, WANG Zhen, WANG Hao-Ran, XIONG Guang-Qiang
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Download: PDF(2805 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract   To some extent, remote sensing alteration anomalies can reflect the alteration of wall rocks. The characteristics of absorption and reflection in ASTER can be obtained by analyzing the spectra of altered minerals. Some bands reflecting obvious characteristics can be calculated on the basis of principal component analysis, with the choice of the principal component of alteration information in accordance with the relationship between the spectra and the eigenvector. The thresholds of the anomalous gray are computed on the fractal model, and the extracted anomalies are well coincident with the known ore deposits.
Keywords Mid-northern Qinghai-Tibet plateau      Geomorphic deformation      Remote sensing      Ecological geology     
: 

 

 
  TP 79:P 614

 
Issue Date: 17 June 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Yan-gui
YAO An-ping
JU Sheng-cheng
WANG-Dong-qing
ZHANG-Kun
Cite this article:   
SUN Yan-gui,YAO An-ping,JU Sheng-cheng, et al.
The Extraction of Alteration Anomalies from ASTER Data Based on Principal Component Analysis and Fractal Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 75-80.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.02.14     OR     https://www.gtzyyg.com/EN/Y2011/V23/I2/75
[1]陈洪冶,李立志,李学梅.矿床学[M].北京:地质出版社,2007:65-68.
[2]毛晓长,刘文灿,杜建国,等.ETM+和ASTER数据在遥感矿化蚀变信息提取应用中的比较:以安徽铜陵凤凰山矿田为例[J].现代地质,2005,19(2):309-314.
[3]李进文,裴荣富,张德全,等.内蒙古白乃庙铜矿成矿地质演化[J].矿床地质,2002,21(增刊):405-408.
[4]李进文,王存贤,侯万荣,等.内蒙古白乃庙地区金矿成矿作用[J].现代地质,2003,17(3):275-279.
[5]Abrams M.ASTER User Handbook Version2[M].Pasadena,CA,USA:Jet Propulsion Laboratory,2002:8-10.
[6]JPL Spectral Library[EB/OL].http://speclib.jpl.nasa.gov/documents/jpl_desc
[7]Baldridge A M,Hook S J.The ASTER Spectral Library Version 2.0[J].Remote Sensing of Environment,2009,113(4):711-715.
[8]USGS Digital Spectral Library 06[EB/OL].http://speclab.cr.usgs.gov/spectral.lib06
[9]陈华慧.遥感地质学[M].北京:地质出版社,1984:108-110.
[10]梅安新.遥感导论[M].北京:高等教育出版社,2001:5-6.
[11]杨金中.多光谱遥感异常提取技术方法体系研究[J].国土资源遥感,2007(4):43-46.
[12]段元彬,刘登忠,徐韬,等.稻城地区遥感蚀变信息提取研究[J].国土资源遥感,2008(4):92-95.
[13]龙晓君,何政伟,刘严松,等.西藏羌多地区遥感蚀变与构造信息提取及成矿预测[J].国土资源遥感,2010(2):63-67.
[14]申维.分形混沌与矿产预测[M].北京:地质出版社,2002:46-49.
[15]李长江,麻土华.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,1999:96-107.
[16]胡受奚,叶瑛,方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社,2004:14-71.
[17]夏庆霖,张寿庭,赵鹏大,等.幂律度与成矿预测[J].成都理工大学学报(自然科学版),2003,30(5):453-456.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech