Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 137-142     DOI: 10.6046/gtzyyg.2017.03.20
|
Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly
HAN Haihui1, 2, WANG Yilin1, YANG Min1, REN Guangli1, YANG Junlu1, LI Jianqiang1, GAO Ting1
1. Xi’an Center of China Geological Survey, Xi’an 710054, China;
2. School of Geological and Surveying, Chang’an University, Xi’an 710054, China
Download: PDF(5085 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  At present, the extracting method for remote sensing alteration anomalies from principal component image relies mainly on the data’s normal distribution, without considering the nonlinear characteristics of geological anomaly. To tackle this problem, the authors have proposed the fractal dimension-change point method(FDCPM)in this paper. By calculating the self-similarity and mutability of alteration anomalies with fractal dimension-change point model, the critical threshold of an alteration anomaly was acquired quantitatively. The realization theory and access mechanism of the method were elaborated by an experiment with ASTER data in Fangshankou,Beishan,and the results of the proposed method and traditional method (de-interfered anomalous principal component thresholding technique,DIAPCTT) were compared with each other. The results show that the FDCPM has a relatively high extracting precision than the DIAPCTT for three alteration minerals in the experiment. In this experiment, the accuracy of three alteration minerals could reach over 83%. Moreover, the distribution of remote sensing alteration anomalies agrees well with a large amount of evidence from the geochemical anomaly and the heavy sand anomaly. What’s more, the known polymetallic ore spots and mineralized spots fall in the zone of remote sensing alteration anomaly or at its edge. All the results mentioned above show that the FDCPM is one of the effective distinguishing methods for the geological background and the remote sensing alteration anomaly in the future.
Keywords SPOT6      rule      building extraction      KNN      SVM     
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Ying
GUO Qiaozhen
PAN Yingyang
WANG Dongchuan
Cite this article:   
FU Ying,GUO Qiaozhen,PAN Yingyang, et al. Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 137-142.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.03.20     OR     https://www.gtzyyg.com/EN/Y2017/V29/I3/137
[1] van der Meer F D,van der Werff H M A,van Ruitenbeek F J A,et al.Multi-and hyperspectral geologic remote sensing:A review[J].International Journal of Applied Earth Observation and Geoinformation,2012,14(1):112-128.
[2] 童庆禧,田国良.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990.
Tong Q X,Tian G L.Spectral and Analysis of Typical Earth Objects of China[M].Beijing:Science Press,1990.
[3] Sadeghi B,Khalajmasoumi M,Afzal P,et al.Using ETM + and ASTER sensors to identify iron occurrences in the Esfordi 1∶100 000 mapping sheet of central Iran[J].Journal of African Earth Sciences,2013,85:103-114.
[4] Pournamdari M,Hashim M,Pour A B.Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex,South Iran[J].Advances in Space Research,2014,54(4):694-709.
[5] 张玉君,曾朝铭,陈 薇.ETM + (TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003,15(2):44-49,doi:10.6046/gtzyyg.2003.02.11"> doi:10.6046/gtzyyg.2003.02.11.
Zhang Y J,Zeng Z M,Chen W.The methods for extraction of alteration anomalies from the ETM + (TM) data and their application:Method selection and technological flow chart[J].Remote Sensing for Land and Resources,2003,15(2):44-49,doi:10.6046/gtzyyg.2003.02.11"> doi:10.6046/gtzyyg.2003.02.11.
[6] 陈 聆,郭 科,柳柄利,等.地球化学矿致异常非线性分析方法研究[J].地球物理学进展,2012,27(4):1701-1707.
Chen L,Guo K,Liu B L,et al.The study of non-linear analysis method of geochemical ore-forming anomaly[J].Progress in Geophysics,2012,27(4):1701-1707.
[7] 成秋明,张生元,左仁广,等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,2009,16(2):185-198.
Cheng Q M,Zhang S Y,Zuo R G,et al.The application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly[J].Earth Science Frontiers,2009,16(2):185-198.
[8] 成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(3):298-305.
Cheng Q M.Singularity of mineralization and multifractal distribution of mineral deposits[J].Bulletin of Mineralogy,Petrology and Geochemistry,2008,27(3):298-305.
[9] 梁钰琦,王功文,朱彦彦,等.分形方法在遥感蚀变信息提取中的应用研究[J].遥感技术与应用,2011,26(4):508-511.
Liang Y Q,Wang G W,Zhu Y Y,et al.Alteration from ETM + data rating based on fractal technologies[J].Remote Sensing Technology and Application,2011,26(4):508-511.
[10] 项静恬,史久恩.非线性系统中数据处理的统计方法[M].北京:科学出版社,1997.
Xiang J T,Shi J E.The Statistical Method of Data Processing in Nonlinear System[M].Beijing:Science Press,1997.
[11] 韩海辉,高 婷,易 欢,等.基于变点分析法提取地势起伏度——以青藏高原为例[J].地理科学,2012,32(1):101-104.
Han H H,Gao T,Yi H,et al.Extraction of relief amplitude based on change point method:A case study on the Tibetan Plateau[J].Scientia Geographica Sinica,2012,32(1):101-104.
[12] 任广利,杨军录,杨 敏,等.高光谱遥感异常提取在甘肃北山金滩子——明金沟地区成矿预测中的应用[J].大地构造与成矿学,2013,37(4):765-776.
Ren G L,Yang J L,Yang M,et al.Application of hyperspectral remote sensing anomaly information on metallogenic prediction in the Jintanzi:Mingjingou area of Beishan,Gansu[J].Geotectonica et Metallogenia,2013,37(4):765-776.
[13] 时丕龙,付碧宏,二宫芳树.基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例[J].地质科学,2010,45(1):333-347.
Shi P L,Fu B H,Ninomiya Y.Detecting lithologic features from ASTER VNIR-SWIR multispectral data in the arid region:A case study in the eastern Kalpin uplift,southwest Tian Shan[J].Chinese Journal of Geology,2010,45(1):333-347.
[14] 张良培.高光谱目标探测的进展与前沿问题[J].武汉大学学报:信息科学版,2014,39(12):1387-1394,1400.
Zhang L P.Advance and future challenges in hyperspectral target detection[J].Geomatics and Information Science of Wuhan University,2014,39(12):1387-1394,1400.
[15] Liu W J,Xie W C,Tong H B,et al.Adaptive coherence estimator based on the Krylov subspace technique for airborne radar[J].Journal of Systems Engineering and Electronics,2015,26(4):705-712.
[16] 刘旭拢,何春阳,潘耀忠,等.遥感图像分类精度的点、群样本检验与评估[J].遥感学报,2006,10(3):366-372.
Liu X L,He C Y,Pan Y Z,et al.Accuracy assessment of thematic classification based on point and cluster sample[J].Journal of Remote Sensing,2006,10(3):366-372.
[1] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[2] WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
[3] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[4] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[5] Zhenyu SHEN, Xiaohong GAO, Min TANG. Comparison and accuracy verification for atmospheric correction of SPOT6 image in high altitude complex terrain area[J]. Remote Sensing for Land & Resources, 2020, 32(1): 81-89.
[6] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[7] Chunyan LU, Yanting XU, Xiaoqing LIN, Lianxiu ZHONG, Ying SU. Study of spatio-temporal evolution of the circum-Bohai urban agglomeration based on DMSP/OLS night-time light data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 218-226.
[8] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[9] Yang ZHOU, Yunsheng ZHANG, Siyang CHEN, Zhengrong ZOU, Yaochen ZHU, Ruixue ZHAO. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land & Resources, 2019, 31(2): 44-50.
[10] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[11] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[12] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[13] Yiqun HU, Shaoguang ZHOU, Shun YUE, Xiaoqing LIU. Remote sensing image retrieval based on sparse local invariant features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 38-44.
[14] CUI Shiai, CHENG Bo, LIU Yueming. Research on methods of building area extraction from high resolution SAR image based on manifold learning[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 48-56.
[15] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech