Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 194-203     DOI: 10.6046/zrzyyg.2023376
|
Construction of an ecological security pattern in the Guanzhong Plain based on ecosystem services
HUI Le1(), WANG Hao1(), LIU Jiamin1, TANG Butian1, ZHANG Weijuan2
1. School of Geography and Tourism of Shaanxi Normal University, Xi’an 710119, China
2. College of Marxism, Fujian Normal University, Fuzhou 350117, China
Download: PDF(3806 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The ecological security pattern serves as an indicator of ecosystem health and sustainability, playing a crucial role in enhancing human well-being. This study identified ecological source areas in the Guanzhong Plain based on three ecosystem services, including water conservation, soil conservation, and habitat provision. Considering regional characteristics, this study selected soil erosion sensitivity index, normalized difference vegetation index (NDVI), and nighttime lighting as disturbance factors to correct the basic resistance surface and identify ecological corridors. The results indicate that the primary and secondary ecological source areas in the Guanzhong Plain cover 3 011.85 km2 and 8 434.51 km2, respectively, corresponding to 5.22% and 14.62% of the total area. These areas, characterized by mountainous terrain and high vegetation cover, are primarily distributed in the Qinling Mountains in the south, the hilly and gully regions in northern Baoji City, and the junctions of Xianyang, Tongchuan, and Weinan cities. The resistance surface correction for Guanzhong Plain reduced 61 ecological corridors (total length: 1 613.4 km), leading to significant changes in their distribution, and ultimately rationalizing corridor identification. Overall, this study provides a novel case for constructing regional ecological security patterns and data support for ecological conservation and urban planning in the Guanzhong Plain.

Keywords Guanzhong Plain      ecological security pattern      ecosystem services      ecological corridor     
ZTFLH:  TP79  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le HUI
Hao WANG
Jiamin LIU
Butian TANG
Weijuan ZHANG
Cite this article:   
Le HUI,Hao WANG,Jiamin LIU, et al. Construction of an ecological security pattern in the Guanzhong Plain based on ecosystem services[J]. Remote Sensing for Natural Resources, 2025, 37(2): 194-203.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023376     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/194
Fig.1  Location of the study area
数据名称 数据来源 数据描述 数据用途
土地利用 http://www.gscloud.cn/ 人工解译2020年Landsat8影像 计算综合阻力面中区位动力指标
气象数据 http://www.geodata.cn/ 基于地形因子采用全国气象站点数据插值并计算平均值获得 计算水源涵养、生物栖息地提供和水土流失敏感性指标
土壤数据 https://www.resdc.cn/ 基于第二次土壤普查数据获得 计算水源涵养、土壤保持和水土流失敏感性指标
高程数据 http://www.gscloud.cn/ 基于此产品计算坡度 计算水源涵养、生物栖息地提供和本底条件指标
植被覆盖 https://www.resdc.cn/ 基于归一化植被指数数据产品获得 计算水土流失敏感性指数和本底条件指标
净初级生产力 http://www.geodata.cn/ Carnegie-Ames-Stanford Approach(CASA)模型计算获得 计算水源涵养、土壤保持和生物栖息地提供指标
基础地理数据 http://ngcc.sbsm.gov.cn/ 行政区划、道路交通、河流水系等数据 计算综合阻力面中区位动力指标
Tab.1  Data sources used for the study
Fig.2  Technology roadmap
扩张类型 生态用地扩张
阻力因子
赋值 方向赋值 权重
1 3 5 7 9
本底条件 高程/m [0,200) [200,350) [350,500) [500,650) [650,3 800) 0.2
坡度/(°) [0,8) [8,15) [15,25) [25,35) [35,90) 0.2
植被覆盖度 (0.5,1] (0.4,0.5] (0.3,0.4] (0.2,0.3] [0,0.2] 0.2
土地利用类型 林地 水域 草地 耕地 建设及未利用地 0.4
区位动力 距主要道路距离/km [0,1) [1,1.5) [1.5,2) [2,3) ≥3 0.45
距居民点距离/km [0,1.5) [1.5,3) [3,5) [5,7) ≥7 0.55
生态阻力 土壤保持重要性 一般重要 轻度重要 中度重要 高度重要 极重要 0.4
水源敏感性 一般重要 轻度重要 中度重要 高度重要 极重要 0.35
生物多样性 一般重要 轻度重要 中度重要 高度重要 极重要 0.25
Tab.2  Evaluation index of resistance surface in the study area
Fig.3  Evalution of ecosystem service importance and identification of ecological source areas
生态系统服务
重要性评价
水源涵养 土壤保持 生物栖息地提供
一般重要 14 391.17 1 698.07 2 807.03
轻度重要 20 946.63 9 708.81 18 475.48
中度重要 10 694.14 21 241.56 15 780.17
高度重要 6 335.01 17 444.72 11 678.72
极重要 2 564.98 4 738.22 6 205.42
Tab.3  Evaluation results of ecosystem service importance (km2)
Fig.4  Ecological sensitivity assessment and calculation results of resistance surface
城市 平均水土流
失敏感性值
平均归一化
植被指数值
平均夜间
灯光值
平均基本
阻力值
平均修正
阻力值
宝鸡 0.09 0.82 0.001 0.52 0.003
咸阳 0.23 0.70 0.007 0.61 0.005
铜川 0.12 0.79 0.002 0.63 0.004
渭南 0.22 0.68 0.003 0.68 0.005
西安 0.13 0.75 0.019 0.55 0.005
Tab.4  Average value of soil erosion sensitivity index, normalized difference vegetation index and nighttime lighting in cities of Guanzhong Plain
Fig.5  Ecological corridor of the Guanzhong Plain before and after resistance surface correction
Fig.6  Ecological security pattern of Guanzhong Plain
城市 生态廊道长度 生态廊道
长度变化
基本阻力面 修正阻力面
宝鸡 6 041.02 5 445.91 -595.11
咸阳 2 750.40 1 509.09 -1 241.31
铜川 266.73 377.98 111.25
渭南 1 876.60 1 460.57 -416.03
西安 3 678.54 4 206.35 527.81
Tab.5  Changes in the length of ecological corridors before and after resistance surface correction in the Guanzhong Plain (km)
[1] Wang D C, Chen J H, Zhang L H, et al. Establishing an ecological security pattern for urban agglomeration,taking ecosystem services and human interference factors into consideration[J]. PeerJ, 2019, 7:e7306.
[2] Qian W Q, Zhao Y, Li X Y. Construction of ecological security pattern in coastal urban areas:A case study in Qingdao,China[J]. Ecological Indicators, 2023, 154:110754.
[3] Duan J Q, Cao Y E, Liu B, et al. Construction of an ecological security pattern in Yangtze River Delta based on circuit theory[J]. Sustainability, 2023, 15(16):12374.
[4] 陈利顶, 景永才, 孙然好. 城市生态安全格局构建:目标、原则和基本框架[J]. 生态学报, 2018, 38(12):4101-4108.
[4] Chen L D, Jing Y C, Sun R H. Urban eco-security pattern construction:Targets,principles and basic framework[J]. Acta Ecolo-gica Sinica, 2018, 38(12):4101-4108.
[5] 马扩, 郝丽娜, 童新, 等. 科尔沁沙丘-草甸相间地区生态安全格局的时空演变[J]. 应用生态学报, 2023, 34(8):2215-2225.
doi: 10.13287/j.1001-9332.202308.021
[5] Ma K, Hao L N, Tong X, et al. Spatiotemporal variations of ecosystem security pattern in Horqin sandy dune meadow alternating area,China[J]. Chinese Journal of Applied Ecology, 2023, 34(8):2215-2225.
[6] Chen J, Wang S S, Zou Y T. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services:A case study of the Guanzhong Plain urban agglomeration,China[J]. Ecological Indicators, 2022, 136:108688.
[7] 韩王亚, 夏双双, 周维, 等. 基于生态廊道识别的拉萨河流域生态安全格局构建[J]. 生态学报, 2023, 43(21):8948-8957.
[7] Han W Y, Xia S S, Zhou W, et al. Constructing ecological security pattern based on ecological corridor identification in Lhasa River Basin[J]. Acta Ecologica Sinica, 2023, 43(21):8948-8957.
[8] 应凌霄, 孔令桥, 肖燚, 等. 生态安全及其评价方法研究进展[J]. 生态学报, 2022, 42(5):1679-1692.
[8] Ying L X, Kong L Q, Xiao Y, et al. The research progress and prospect of ecological security and its assessing approaches[J]. Acta Ecologica Sinica, 2022, 42(5):1679-1692.
[9] 王悦露, 董威, 张云龙, 等. 基于生态系统服务的生态安全研究进展[J]. 生态学报, 2023, 43(19):7821-7829.
[9] Wang Y L, Dong W, Zhang Y L, et al. Research progress and prospect of ecological security based on ecosystem services[J]. Acta Ecologica Sinica, 2023, 43(19):7821-7829.
[10] 马超, 陈英, 张金龙, 等. 河西走廊生态安全格局构建与优化研究[J]. 生态科学, 2023, 42(1):206-214.
[10] Ma C, Chen Y, Zhang J L, et al. Construction and optimization of ecological security pattern in Hexi Corridor[J]. Ecological Science, 2023, 42(1):206-214.
[11] Sutton-Grier A E, Wowk K, Bamford H. Future of our coasts:The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities,economies and ecosystems[J]. Environmental Science and Policy, 2015, 51:137-148.
[12] Seto K C, Güneralp B, Hutyra L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16083-16088.
doi: 10.1073/pnas.1211658109 pmid: 22988086
[13] 俞孔坚, 李海龙, 李迪华, 等. 国土尺度生态安全格局[J]. 生态学报, 2009, 29(10):5163-5175.
[13] Yu K J, Li H L, Li D H, et al. National scale ecological security pattern[J]. Acta Ecologica Sinica, 2009, 29(10):5163-5175.
[14] 彭建, 李慧蕾, 刘焱序, 等. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 2018, 73(4):701-710.
doi: 10.11821/dlxb201804009
[14] Peng J, Li H L, Liu Y X, et al. Identification and optimization of ecological security pattern in Xiong’an New Area[J]. Acta Geographica Sinica, 2018, 73(4):701-710.
[15] 叶鑫, 邹长新, 刘国华, 等. 生态安全格局研究的主要内容与进展[J]. 生态学报, 2018, 38(10):3382-3392.
[15] Ye X, Zou C X, Liu G H, et al. Main research contents and advances in the ecological security pattern[J]. Acta Ecologica Sinica, 2018, 38(10):3382-3392.
[16] 蒙吉军, 朱利凯, 杨倩, 等. 鄂尔多斯市土地利用生态安全格局构建[J]. 生态学报, 2012, 32(21):6755-6766.
[16] Meng J J, Zhu L K, Yang Q, et al. Building ecological security pattern based on land use:A case study of Ordos,Northern China[J]. Acta Ecologica Sinica, 2012, 32(21):6755-6766.
[17] 胡海德, 李小玉, 杜宇飞. 大连城市生态安全格局的构建[J]. 东北师大学报(自然科学版), 2013, 45(1):138-143.
[17] Hu H D, Li X Y, Du Y F. Construction of urban ecological security pattern for Dalian[J]. Journal of Northeast Normal University (Natural Science Edition), 2013, 45(1):138-143.
[18] 杨天荣, 匡文慧, 刘卫东, 等. 基于生态安全格局的关中城市群生态空间结构优化布局[J]. 地理研究, 2017, 36(3):441-452.
doi: 10.11821/dlyj201703004
[18] Yang T R, Kuang W H, Liu W D, et al. Optimizing the layout of eco-spatial structure in Guanzhong urban agglomeration based on the ecological security pattern[J]. Geographical Research, 2017, 36(3):441-452.
[19] 江源通, 田野, 郑拴宁. 海岛型城市生态安全格局研究——以平潭岛为例[J]. 生态学报, 2018, 38(3):769-777.
[19] Jiang Y T, Tian Y, Zheng S N. A study on urban ecosecurity pattern of island city:A case study of Pingtan Island[J]. Acta Ecologica Sinica, 2018, 38(3):769-777.
[20] Peng J, Zhao H J, Liu Y X. Urban ecological corridors construction:A review[J]. Acta Ecologica Sinica, 2017, 37(1):23-30.
[21] 任志远, 黄青, 李晶. 陕西省生态安全及空间差异定量分析[J]. 地理学报, 2005, 60(4):597-606.
[21] Ren Z Y, Huang Q, Li J. Quantitative analysis of dynamic change and spatial difference of the ecological safety:The case of Shaanxi Province[J]. Acta Geographica Sinica, 2005, 60(4):597-606.
[22] 潘卫涛, 岳邦瑞, 姚龙杰, 等. 耦合风险与服务的市域生态安全格局构建——以陕西省咸阳市为例[J]. 应用生态学报, 2023, 34(1):178-186.
doi: 10.13287/j.1001-9332.202301.022
[22] Pan W T, Yue B R, Yao L J, et al. Urban ecological security pattern construction coupled with risk and service:A case study of Xianyang City,Shaanxi Province,China[J]. Chinese Journal of Applied Ecology, 2023, 34(1):178-186.
[23] 张玉娟, 宋阳, 赵梓涵, 等. 基于 “源-汇” 理论和MCR的哈尔滨市生态安全格局变化[J]. 测绘与空间地理信息, 2022, 45(3):1-4.
[23] Zhang Y J, Song Y, Zhao Z H, et al. Ecological security pattern changes in Harbin based on source-sink landscape theory and MCR[J]. Geomatics and Spatial Information Technology, 2022, 45(3):1-4.
[24] 金山. 基于GIS的泉州市生态安全格局构建及空间发展预景[D]. 天津: 天津大学, 2017.
[24] Jin S. The research of ecological security patterns and space development prospect in Quanzhou on GIS[D]. Tianjin: Tianjin University, 2017.
[25] 孙泽兴, 李汶怡, 刘嘉敏, 等. 陕西省生态恢复综合效益评估[J]. 生态学报, 2022, 42(7):2718-2729.
[25] Sun Z X, Li W Y, Liu J M, et al. Evaluation of comprehensive be-nefit for ecological restoration in Shaanxi Province[J]. Acta Ecologica Sinica, 2022, 42(7):2718-2729.
[26] 张海铃, 叶长盛, 胡梦姗. 基于生态安全格局的环鄱阳湖城市群生态修复关键区域识别及修复策略[J]. 水土保持研究, 2023, 30(2):393-402.
[26] Zhang H L, Ye C S, Hu M S. Identification and restoration strategy of key areas of ecological restoration in urban agglomeration around Poyang Lake based on ecological security pattern[J]. Research of Soil and Water Conservation, 2023, 30(2):393-402.
[27] 彭建, 郭小楠, 胡熠娜, 等. 基于地质灾害敏感性的山地生态安全格局构建——以云南省玉溪市为例[J]. 应用生态学报, 2017, 28(2):627-635.
doi: 10.13287/j.1001-9332.201702.013
[27] Peng J, Guo X N, Hu Y N, et al. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity:A case study in Yuxi City,Yunnan Province,China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):627-635.
[28] Yang Y, Cai Z X. Ecological security assessment of the Guanzhong Plain urban agglomeration based on an adapted ecological footprint model[J]. Journal of Cleaner Production, 2020, 260:120973.
[29] 杨姗姗, 邹长新, 沈渭寿, 等. 基于生态红线划分的生态安全格局构建——以江西省为例[J]. 生态学杂志, 2016, 35(1):250-258.
[29] Yang S S, Zou C X, Shen W S, et al. Construction of ecological security patterns based on ecological red line:A case study of Jiangxi Province[J]. Chinese Journal of Ecology, 2016, 35(1):250-258.
[30] 谭华清, 张金亭, 周希胜. 基于最小累计阻力模型的南京市生态安全格局构建[J]. 水土保持通报, 2020, 40(3):282-288,296,325.
[30] Tan H Q, Zhang J T, Zhou X S. Construction of ecological security patterns based on minimum cumulative resistance model in Nanjing City[J]. Bulletin of Soil and Water Conservation, 2020, 40(3):282-288,296,325.
[31] 侯松岩. 基于GIS技术的广东省清远市城市生态安全格局构建研究[J]. 智能城市, 2022, 8(10):77-80.
[31] Hou S Y. Research on the construction of urban ecological security pattern in Qingyuan City,Guangdong Province based on GIS technology[J]. Intelligent City, 2022, 8(10):77-80.
[32] Kass M J. Summary for policymakers of the global assessment report on biodiversity and ecosystem services[J]. Natural Resources and Environment, 2020, 34(3):62.
[33] 韩世豪, 梅艳国, 叶持跃, 等. 基于最小累积阻力模型的福建省南平市延平区生态安全格局构建[J]. 水土保持通报, 2019, 39(2):192-198,205.
[33] Han S H, Mei Y G, Ye C Y, et al. Construction of ecological security pattern in Yanping District of Nanping City,Fujian Province based on minimum cumulative resistance model[J]. Bulletin of Soil and Water Conservation, 2019, 39(2):192-198,205.
[34] 彭建, 赵会娟, 刘焱序, 等. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 2017, 36(3):407-419.
doi: 10.11821/dlyj201703001
[34] Peng J, Zhao H J, Liu Y X, et al. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 2017, 36(3):407-419.
[35] Dai L, Liu Y B, Luo X Y. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake,China[J]. Science of the Total Environment, 2021, 754:141868.
[36] Dong J Q, Peng J, Xu Z H, et al. Integrating regional and interregional approaches to identify ecological security patterns[J]. Landscape Ecology, 2021, 36(7):2151-2164.
[37] Li Z T, Li M, Xia B C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation[J]. Ecological Indicators, 2020, 114:106319.
[38] Li J Z, Ouyang X, Zhu X. Land space simulation of urban agglo-merations from the perspective of the symbiosis of urban development and ecological protection:A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Ecological Indicators, 2021, 126:107669.
[39] 吴健生, 张理卿, 彭建, 等. 深圳市景观生态安全格局源地综合识别[J]. 生态学报, 2013, 33(13):4125-4133.
[39] Wu J S, Zhang L Q, Peng J, et al. The integrated recognition of the source area of the urban ecological security pattern in Shenzhen[J]. Acta Ecologica Sinica, 2013, 33(13):4125-4133.
[40] Ma L B, Bo J, Li X Y, et al. Identifying key landscape pattern indices influencing the ecological security of inland river basin:The middle and lower reaches of Shule River Basin as an example[J]. Science of the Total Environment, 2019, 674:424-438.
[41] 王正伟, 王宏卫, 杨胜天, 等. 基于生态系统服务功能的新疆绿洲生态安全格局识别及优化策略——以拜城县为例[J]. 生态学报, 2022, 42(1):91-104.
[41] Wang Z W, Wang H W, Yang S T, et al. Identification and optimization strategy of ecological security pattern of Oasis in Xinjiang based on ecosystem service function:Taking Baicheng County as an example[J]. Acta Ecologica Sinica, 2022, 42(1):91-104.
[42] 胡俊峰, 陈昱星, 徐晓慧, 等. 基于生态安全格局的海岛型城市生态保护修复关键区域识别——以福州市海坛岛为例[J]. 山东林业科技, 2022, 52(6):1-11.
[42] Hu J F, Chen Y X, Xu X H, et al. Ecological protection and restoration of island-type cities based on ecological security pattern identification of key areas:Taking Haitan Island in Fuzhou as an example[J]. Journal of Shandong Forestry Science and Technology, 2022, 52(6):1-11.
[43] 毛诚瑞, 代力民, 齐麟, 等. 基于生态系统服务的流域生态安全格局构建——以辽宁省辽河流域为例[J]. 生态学报, 2020, 40(18):6486-6494.
[43] Mao C R, Dai L M, Qi L, et al. Constructing ecological security pattern based on ecosystem services:A case study in Liaohe River Basin,Liaoning Province,China[J]. Acta Ecologica Sinica, 2020, 40(18):6486-6494.
[44] 赵宇豪, 罗宇航, 易腾云, 等. 基于生态系统服务供需匹配的深圳市生态安全格局构建[J]. 应用生态学报, 2022, 33(9):2475-2484.
doi: 10.13287/j.1001-9332.202209.026
[44] Zhao Y H, Luo Y H, Yi T Y, et al. Constructing an ecological security pattern in Shenzhen,China,by matching the supply and demand of ecosystem services[J]. Chinese Journal of Applied Ecology, 2022, 33(9):2475-2484.
[45] 汉瑞英, 赵志平, 肖能文, 等. 基于最小累积阻力差值模型的北京市生态安全格局构建[J]. 水土保持通报, 2022, 42(3):95-102.
[45] Han R Y, Zhao Z P, Xiao N W, et al. Construction of ecological security pattern in Beijing City based on minimum resistance model[J]. Bulletin of Soil and Water Conservation, 2022, 42(3):95-102.
[46] 李欣鹏, 李锦生, 侯伟. 区域生态网络精细化空间模拟及廊道优化研究——以汾河流域为例[J]. 地理与地理信息科学, 2020, 36(5):14-20,55.
[46] Li X P, Li J S, Hou W. Research on refined simulation of regional ecological network and corridor optimization:A case study of Fenhe River Basin[J]. Geography and Geo-Information Science, 2020, 36(5):14-20,55.
[47] 熊善高, 秦昌波, 于雷, 等. 基于生态系统服务功能和生态敏感性的生态空间划定研究——以南宁市为例[J]. 生态学报, 2018, 38(22):7899-7911.
[47] Xiong S G, Qin C B, Yu L, et al. Methods to identify the boundary of ecological space based on ecosystem service functions and ecological sensitivity:A case study of Nanning City[J]. Acta Ecologica Sinica, 2018, 38(22):7899-7911.
[48] 徐彩芳, 曹月娥, 许仲林, 等. 新疆维吾尔自治区阿克苏地区生态源地的识别方法研究[J]. 水土保持通报, 2021, 41(4):174-181,188.
[48] Xu C F, Cao Y E, Xu Z L, et al. A study on identification methods of ecological source area in Aksu Area,Xinjiang Ulgur Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2021, 41(4):174-181,188.
[49] 陈瑶瑶, 罗志军, 齐松, 等. 基于生态敏感性与生态网络的南昌市生态安全格局构建[J]. 水土保持研究, 2021, 28(4):342-349.
[49] Chen Y Y, Luo Z J, Qi S, et al. Ecological security pattern construction of Nanchang City based on ecological sensitivity and ecological network[J]. Research of Soil and Water Conservation, 2021, 28(4):342-349.
[1] LIU Yonglin, GAO Yizhong, CHEN Minghui, QIU Ling. Construction and analysis of the ecological security pattern in territorial space for Dongguan City, Guangdong Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 126-134.
[2] LI Bo, LIN Wenpeng, LI Lubing. SDG15-oriented analysis on the spatiotemporal dynamics of ecosystem services in Qianjiangyuan National Park[J]. Remote Sensing for Natural Resources, 2022, 34(4): 243-253.
[3] YE Qinyu, YANG Shiqi, ZHANG Qiang, WANG Shu, HE Zeneng, ZHENG Yinghui. Analysis on water conservation function using remote sensing method in the Three Gorges Reservoir area (Chongqing section)[J]. Remote Sensing for Natural Resources, 2022, 34(2): 184-193.
[4] Riping ZHOU. Assessing the soil erosion control service in the typical area of Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(2): 131-139.
[5] KANG Hongxia, NA Xiaodong, ZANG Shuying. Research on the evaluation of wetland ecosystem services of Songnen Plain during 1980—2010[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 193-200.
[6] XU Xu, REN Feipeng, HAN Nianlong. Remote sensing monitoring of spatio-temporal changes of ecosystem service values in Hebei Province, 2000—2009[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 187-193.
[7] YIN Kai, ZHAO Qianjun, WEN Meiping, HUA Lizhong, LIN Tao, SHI Longyu. Assessment of landscape pattern effect and ecosystem services of island urban forest[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 128-133.
[8] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech