Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 184-193     DOI: 10.6046/zrzyyg.2021182
|
Analysis on water conservation function using remote sensing method in the Three Gorges Reservoir area (Chongqing section)
YE Qinyu1,2(), YANG Shiqi1,2(), ZHANG Qiang3, WANG Shu4, HE Zeneng1,2, ZHENG Yinghui3
1. Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
2. Chongqing Engineering Research Center of Agrometeorology and Satellite Remote Sensing, Chongqing 401147, China
3. Chongqing Meteorological Bureau, Chongqing 401147, China
4. National Meteorological Information Center, Beijing 100081, China
Download: PDF(5545 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Water conservation is one of the most important functions of an ecosystem and can maintain and provide water resources for the ecosystem and humans. According to the physical meaning of water conservation, this study used leaf area index, vegetation coverage, and evapotranspiration to represent the water conservation of the vegetation layer and used surface temperature, soil moisture content, and slope to represent the water conservation capacity of the soil layer. Then, this study developed a remote sensing monitoring and evaluation model for water conservation through principal component analysis to explore the spatial-temporal distribution characteristics of the water conservation capacity in the Three Gorges reservoir area. The results show that the water conservation index (WCI) contained the objective information of various indices, could be used to quickly and conveniently assess the water conservation function in the Three Gorges Reservoir area, and properly represented the water conservation capacity there. In 2019, the water conservation capacity was unevenly distributed in the Three Gorges reservoir area and was high downstream and low upstream. The northeastern part of Chongqing was dominated by forest ecosystems and had the strongest water conservation function. From 2013 to 2019, the WCI slightly increased in most areas, especially in some parts of Fengdu, Kaizhou, and Yunyang areas.

Keywords water conservation      Three Gorges Reservoir area      ecosystem services      remote sensing     
Corresponding Authors: YANG Shiqi     E-mail: yeqinyu0427@163.com;yangshiqi1980@sina.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qinyu YE
Shiqi YANG
Qiang ZHANG
Shu WANG
Zeneng HE
Yinghui ZHENG
Cite this article:   
Qinyu YE,Shiqi YANG,Qiang ZHANG, et al. Analysis on water conservation function using remote sensing method in the Three Gorges Reservoir area (Chongqing section)[J]. Remote Sensing for Natural Resources, 2022, 34(2): 184-193.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021182     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/184
Fig.1  Administrative map and regional division of the Three Gorges Reservoir area
Fig.2  FY3D image and DEM image of the Three Gorges Reservoir area(Chongqing section)
数据类型 数据精度 数据来源 数据描述
NDVI 空间分辨率250 m,时间分辨率16 d NASA地球科学数据 MODIS植被指数产品,MOD13Q1
叶面积指数 空间分辨率500 m,时间分辨率8 d NASA地球科学数据 MODIS叶面积指数产品,MOD15A2H
地表温度 空间分辨率1 000 m,时间分辨率8 d NASA地球科学数据 MODIS地表温度产品,MOD11A2
蒸散 空间分辨率500 m,时间分辨率8 d NASA地球科学数据 MODIS蒸散产品,MOD16A2
地表分类 空间分辨率500 m,时间分辨率年 NASA地球科学数据 MODIS土地覆盖类型产品,MCD12Q1,IGBP全球植被分类方案将地表覆盖分为17类
坡度 空间分辨率1 000 m 寒区旱区科学数据中心 由中国1 000 m分辨率数字高程模型计算而来
土壤水分 空间分辨率10 km,时间分辨率月 JAXA日本宇宙航空研究开发机构 AMSR2土壤水分产品
Tab.1  Data source and basic information
Fig.3  Spatial distribution of various ecological factors in the Three Gorges Reservoir area(Chongqing section) in 2019
要素 第一主
成分
第二主
成分
第三主
成分
第四主
成分
第五主
成分
第六主
成分
叶面积指数 0.64 0.59 -0.31 -0.22 -0.31 0.07
植被覆盖度 0.37 0.17 0.19 0.35 0.74 0.36
蒸散 0.16 -0.06 -0.15 0.88 -0.33 -0.25
土壤含水量 -0.52 0.78 0.26 0.16 0.00 -0.13
地表温度 -0.27 -0.01 -0.16 0.15 -0.32 0.88
坡度 0.29 -0.08 0.87 -0.02 -0.38 0.10
Tab.2  Matrix table of principal component coefficients in 2019
第一主成分 2013年 2014年 2015年 2016年 2017年 2018年 2019年 平均值
叶面积指数 0.60 0.69 0.66 0.71 0.67 0.73 0.64 0.67
植被覆盖度 0.41 0.36 0.40 0.39 0.40 0.40 0.37 0.39
蒸散 0.17 0.14 0.10 0.12 0.03 0.10 0.16 0.12
土壤含水量 -0.49 -0.44 -0.38 -0.39 -0.44 -0.25 -0.52 -0.42
地表温度 -0.33 -0.29 -0.38 -0.29 -0.31 -0.38 -0.27 -0.32
坡度 0.29 0.32 0.34 0.31 0.32 0.31 0.29 0.31
Tab.3  The first principal component coefficients from 2013 to 2019
Fig.4  The distribution of WCI in the Three Gorges Reservoir area(Chongqing section) in 2019
生态系统类型(1级) 生态系统类型(2级) 平均WCI



森林
常绿阔叶林 0.65
常绿针叶林
针阔混交林
落叶阔叶林
0.72
0.81
0.92
草地 多树草原
稀树草原
草地
0.68
0.30
0.22
作物 作物
作物和自然植被镶嵌体
0.15
0.23
城市和建成区
裸地
城市和建成区
裸地
-0.13
-0.17
Tab.4  The average WCI of different ecosystem
Fig.5  Spatial characteristic of water conservation importance in the Three Gorges Reservoir area (Chongqing section) in 2019
Fig.6  Changes of annual average and different levels of WCI in the Three Gorges Reservoir area (Chongqing Section) from 2013 to 2019
Fig.7  Spatial pattern of WCI trend in the Three Gorges Reservoir area(Chongqing section) from 2013 to 2019
[1] Ball P. Water,water everywhere?[J]. Nature, 2004, 427(6969):19-20.
doi: 10.1038/427019a url: https://doi.org/10.1038/427019a
[2] 环境保护部. 生态保护红线划定指南[M]. 北京: 环境保护部, 2015.
[2] Ministry of Ecology and Environment of the People’s Republic of China. Ecological protection red line delineated Guide[M]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2015.
[3] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7):2455-2462.
[3] Gong S H, Xiao Y, Zheng H, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica, 2017, 37(7):2455-2462.
[4] 石培礼, 吴波, 程根伟, 等. 长江上游地区主要森林植被类型蓄水能力的初步研究[J]. 自然资源学报, 2004, 19(3):351-360.
[4] Shi P L, Wu B, Cheng G W, et al. Water retention capacity evaluation of main forest vegetation types in the upper Yangtze basin[J]. Journal of Natural Resources, 2004, 19(3):351-360.
[5] 王升堂, 孙贤斌, 夏韦, 等. 生态系统水源涵养功能的重要性评价——以皖西大别山森林为例[J]. 资源开发与市场, 2019, 35(10):1252-1257.
[5] Wang S T, Sun X B, Xia W, et al. Evaluating on significance function of water conservation in forest ecosystem-Taking Dabieshan Mountain in western Anhui Province as an example[J]. Resource Development & Market, 2019, 35(10):1252-1257.
[6] Xu J, Xiao Y, Xie G D. Analysis on the spatio-temporal patterns of water conservation services in Beijing[J]. Journal of Resources and Ecology, 2019, 10(4):362-372.
doi: 10.5814/j.issn.1674-764x.2019.04.003 url: https://bioone.org/journals/journal-of-resources-and-ecology/volume-10/issue-4/j.issn.1674-764x.2019.04.003/Analysis-on-the-Spatio-Temporal-Patterns-of-Water-Conservation-Services/10.5814/j.issn.1674-764x.2019.04.003.full
[7] 李盈盈, 刘康, 胡胜, 等. 陕西省子午岭生态功能区水源涵养能力研究[J]. 干旱区地理, 2015, 38(3):636-642.
[7] Li Y Y, Liu K, Hu S, et al. Water conservation function of Ziwuling Ecological Area in Shanxi Province[J]. Arid Land Geography, 2015, 38(3):636-642.
[8] 程一凡. 基于InVEST模型的三江源国家公园水源涵养量变化与草地生态补偿研究[D]. 云南: 云南财经大学, 2019.
[8] Cheng Y F. Study on the change of water conservation capacity and grassland ecological compensation in Sanjianyuan National Park based on InVEST model[D]. Yunnan: Yunnan University of Finance and Economics, 2019.
[9] 吕乐婷, 任甜甜, 孙才志, 等. 1980—2016年三江源国家公园水源供给及水源涵养功能时空变化研究[J]. 生态学报, 2020, 40(3):993-1003.
[9] Lv L T, Ren T T, Sun C Z, et al. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016[J]. Acta Ecologica Sinica, 2020, 40(3):993-1003.
[10] 刘菊, 傅斌, 张成虎, 等. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估[J]. 长江流域资源与环境, 2019, 28(3):577-585.
[10] Liu J, Fu B, Zhang C H, et al. Assessment of ecosystem water retention and its value in the upper reaches of Minjiang River based on InVEST model[J]. Resources and Environment in the Yangtze Basin, 2019, 28(3):577-585.
[11] 李莉, 苏维词, 葛银杰. 重庆市森林生态系统水源涵养功能研究[J]. 水土保持研究, 2015, 22(2):96-100.
[11] Li L, Su W C, Ge Y J. Analysis on water conservation capacity of forest ecosystem in Chongqing[J]. Research of Soil and Water Conservation, 2015, 22(2):96-100.
[12] 潘梅, 陈天伟, 黄麟, 等. 京津冀地区生态系统服务时空变化及驱动因素分析[J]. 生态学报, 2020(15):1-17.
[12] Pan M, Chen T W, Huang L, et al. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji region[J]. Acta Ecologica Sinica, 2020(15):1-17.
[13] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
[13] Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[14] 徐涵秋. 水土流失区生态变化的遥感评估[J]. 农业工程学报, 2013, 29(7):91-97,294.
[14] Xu H Q. Assessment of ecological change in soil loss area using remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7):91-97,294.
[15] 施婷婷, 徐涵秋, 孙凤琴, 等. 建设项目引发的区域生态变化的遥感评估——以敖江流域为例[J]. 生态学报, 2019(18):1-14.
[15] Shi T T, Xu H Q, Sun F Q, et al. Remote-sensing-based assessment of regional ecological changes triggered by a construction project:A case study of Aojiang River Watershed[J]. Acta Ecologica Sinica, 2019(18):1-14.
[16] 杨绘婷, 徐涵秋. 基于遥感空间信息的武夷山国家级自然保护区植被覆盖度变化与生态质量评估[J]. 应用生态学报, 2020, 31(2):533-542.
[16] Yang H T, Xu H Q. Assessing fractional vegetation cover changes and ecological quality of the Wuyi Mountain National Nature Reserve based on remote sensing spatial information[J]. Chinese Journal of Applied Ecology, 2020, 31(2):533-542.
[17] 李月臣, 刘春霞, 闵婕, 等. 三峡库区生态系统服务功能重要性评价[J]. 生态学报, 2013, 33(1):168-178.
[17] Li Y C, Liu C X, Min J, et al. RS/GIS based integrated evaluation of the ecosystem services of the Three Gorges Reservoir area (Chongqing section)[J]. Acta Ecologica Sinica, 2013, 33(1):168-178.
doi: 10.5846/stxb201107020989 url: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201107020989
[18] 张德军, 杨世琦, 王永前, 等. 基于GF-1数据的三峡库区水体信息精细化提取[J]. 人民长江, 2019, 50(9):233-239.
[18] Zhang D J, Yang S Q, Wang Y Q, et al. Refined water body information extraction of Three Gorges reservoir by using GF - 1 satellite data[J]. Yangtze River, 2019, 50(9):233-239.
[19] 邓坤枚, 石培礼, 谢高地. 长江上游森林生态系统水源涵养量与价值的研究[J]. 资源科学, 2002, 24(6),68-73.
[19] Deng K M, Shi P L, Xie G D. Water conservation of forest ecosystem in the upper reaches of yangtze river and its benefits[J]. Resources Science, 2002, 24(6),68-73.
[20] 周佳雯, 高吉喜, 高志球, 等. 森林生态系统水源涵养服务功能解析[J]. 生态学报, 2018, 38(5):1679-1686.
[20] Zhou J W, Gao J X, Gao Z Q, et al. Analyzing the water conservation service function of the forest ecosystem[J]. Acta Ecologica Sinica, 2018, 38(5):1679-1686.
[21] 陈姗姗, 刘康, 包玉斌, 等. 商洛市水源涵养服务功能空间格局与影响因素[J]. 地理科学, 2016, 36(10):1546-1554.
doi: 10.13249/j.cnki.sgs.2016.10.012
[21] Chen S S, Liu K, Bao Y B, et al. Spatial pattern and influencing factors of water conservation service function in Shangluo City[J]. Scientia Geographica Sinica, 2016, 36(10):1546-1554.
[22] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26:153-159.
[22] Li M M, Wu B F, Yan C Z, et al. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing[J]. Resources Science, 2004, 26:153-159.
[23] 尹云鹤, 吴绍洪, 赵东升, 等. 过去30年气候变化对黄河源区水源涵养量的影响[J]. 地理研究, 2016, 35(1):49-57.
doi: 10.11821/dlyj201601005
[23] Yin Y H, Wu S H, Zhao D S, et al. Ecosystem water conservation changes in response to climate change in the Source Region of the Yellow River from 1981 to 2010[J]. Geographical Research, 2016, 35(1):49-57.
[24] 李双权, 苏德毕力格, 哈斯, 等. 长江上游森林水源涵养功能及空间分布特征[J]. 水土保持通报, 2011, 31(4):62-67.
[24] Li S Q, Su D B L G, Ha S, et al. Water conservation function of forest ecosystem and its spatial distribution characteristics in upper reaches of the yangtze river[J]. Bulletin of Soil and Water Conservation, 2011, 31(4):62-67.
[25] Hu W M, Li G, Gao Z H, et al. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model[J]. Science of the Total Environment, 2020, 733:1-13.
[26] 郑培龙, 肖江伟, 吴云, 等. 重庆缙云山典型林分林地土壤贮水特性研究[J]. 水土保持研究, 2006(2):195-197.
[26] Zheng P L, Xiao J W, Wu Y, et al. Research on forest soil water retaining properties of typical forests in Jinyun Mountain in Chongqing City[J]. Research of Soil and Water Conservation, 2006(2):195-197.
[27] 徐建华. 计量地理学[M]. 北京: 高等教育出版社, 2006.
[27] Xu J H. Econometric geography[M]. Beijing: Higher Education Press, 2006.
[28] 曾莉, 李晶, 李婷, 等. 基于贝叶斯网络的水源涵养服务空间格局优化[J]. 地理学报, 2018, 73(9):1809-1822.
doi: 10.11821/dlxb201809015
[28] Zeng L, Li J, Li T, et al. Optimizing spatial patterns of water conservation ecosystem service based on Bayesian belief networks[J]. Journal of Geographical Sciences, 2018, 73(9):1809-1822.
[29] 齐静, 袁兴中, 刘红, 等. 重庆市三峡库区水源涵养重要功能区生态系统服务功能时空演变特征[J]. 水土保持通报, 2015, 35(3):256-260,266,365.
[29] Qi J, Yuan X Z, Liu H, et al. Spatio temporal characteristics of ecosystem service in key water resource conservation function area of Three Gorges Area in Chongqing City[J]. Bulletin of Soil and Water Conservation, 2015, 35(3):256-260,266,365.
[30] 惠刚樱, 王宏翔. 关于森林生态系统服务功能评价的思考[J]. 温带林业研究, 2018, 1(3):5-9.
[30] Hui G Y, Wang H X. Consideration on the evaluation of forest ecosystem service function[J]. Journal of Temperate Forestry Research, 2018, 1(3):5-9.
[31] 顾铮鸣, 金晓斌, 沈春竹, 等. 近15 a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11):2453-2462.
[31] Gu Z M, Jin X B, Shen C Z, et al. Variation and influence factors of water conservation service function in Jiangsu Province from 2000 to 2015[J]. Resources and Environment in the Yangtze Basin, 2018, 27(11):2453-2462.
[32] 崔景轩, 李秀芬, 郑海峰, 等. 典型气候条件下东北地区生态系统水源涵养功能特征[J]. 生态学报, 2019, 39(9):3026-3038.
[32] Cui J X, Li X F, Zheng H F, et al. Spatial analysis of water conservation function in northeast China under different climatic conditions[J]. Acta Ecologica Sinica, 2019, 39(9):3026-3038.
[33] 环境保护部. 全国生态功能区划(修编版)[M]. 北京: 环境保护部, 2015.
[33] Ministry of Ecology and Environment of the People’s republic of china. National ecological function zoning (revised version)[M]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2015.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[4] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[5] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[6] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[7] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[8] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[9] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[10] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[11] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[12] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[13] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[14] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[15] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech